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Abstract— The reduced-order modeling of a system from
data is an established task in system and control theory and
well understood for standard linear systems with the Loewner
framework being one of many prolific approaches. While there
is significant overlap between this problem and that of system
identification, in particular, the latter does not immediately
imply that model order reduction is occurring. In the case
of descriptor systems for which the transfer function is not a
proper rational function anymore, recent research efforts have
addressed strategies to deal with the non-proper parts more or
less explicitly. In this work, we propose a variant of a Loewner
matrix-based interpolation algorithm that implicitly addresses
possibly non-proper components of the system response. We
evaluate the performance of the suggested approach by com-
paring against recently-developed explicit algorithms for which
we propose a linearized Navier-Stokes model with a significant
non-proper behavior as a benchmark example.

I. INTRODUCTION

Accurate modeling of physical phenomena often leads
to large-scale dynamical systems that require long simu-
lation times and storage of large amount of data. In this
context, model order reduction (MOR) aims at obtaining
much smaller and simpler models that are still capable of
accurately representing the behavior of the original process.
The Loewner framework (LF) [1] is very appealing due to its
data-driven nature, which makes it non-intrusive as it does
not use the full or exact description of the model. Hence, it
can be viewed as a data-driven reduced-order modeling tool
(in this context, data are frequency response measurements).

Dynamical systems characterized by differential algebraic
equations (DAEs) (referred to as descriptor, singular or semi-
state systems) are not only of theoretical interest but also
have a broad application range. In chemistry, for example, the
additional algebraic equations account for thermodynamic
equilibrium relations, steady state assumptions, or empirical
correlations [2]. In mechanics, DAEs result from holonomic
and non-holonomic constraints [3]. We refer the reader to [4]
for an in-depth account of analysis and numerical solution
of DAEs, and to contributions from the last two decades
that extended classical MOR methods to specific cases of
dynamical systems with DAEs in [3], [5]–[7].

The LF is based on the Loewner pencil that allows solving
the generalized realization problem for linear time-invariant
(LTI) systems [8], and obtaining surrogate dynamical mod-
els directly from data. If required, reduced-order models
are computed through compression based on the Singular
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Value Decomposition (SVD). The Loewner matrix method
of Antoulas-Anderson (AA) in [9] also uses a Loewner
matrix to construct interpolatory rational functions, but it
is based on barycentric representations of such functions, as
opposed to the Loewner pencil formulation in LF. To broaden
the applicability of LF, extensions of the LF have recently
been proposed for specific classes of dynamical systems
characterized by DAEs, such as the approaches in [10], [11].

In this class, the linearized Navier-Stokes equations
(NSEs) are a meaningful test case. The standard velocity-
pressure formulation of the NSEs comes with a matrix-
pencil of index 2; however, the linear term, i.e. the term of
polynomial degree one, in the transfer function only occurs if
the control happens to affect the continuity equation; cp. [12].
In a theoretical model, this scenario hardly ever occurs from
first principles. Nonetheless, in the numerical realization of
Dirichlet conditions, such a control term may appear; cp.
[13]. In this work, we present a discretization approach that
explicitly treats the Dirichlet control such that the linear part
in the transfer function becomes a significant part of the
model. We test established and recent developments of the
LF on this model in terms of the qualitative identification of
the non-proper terms and the quantitative approximation of
the overall transfer function.

As the title suggests, the explicit approach for matching
of non-proper transfer functions in the LF will be made
according to [11]. There, the polynomial coefficients are
explicitly estimated and then, the data are post-processed so
that a proper rational function can be fitted instead. Then,
the implicit approach consists of an adaptation of the AA
method in [9] to account for such polynomial terms, directly
in the barycentric form of the fitted rational function. The
latter has the advantage that no estimation of polynomial
coefficient or post-processing is required.

II. THE TANGENTIAL RATIONAL INTERPOLATION
PROBLEM

For MIMO (multi-input multi-output) dynamical systems,
characterized in state-space formulation by:

Eẋ(t) = Ax(t) +Bu(t), (1)
y(t) = Cx(t) +Du(t), (2)

the samples of its transfer function H(s) = C(sE −
A)−1B+D are p×m matrices, since E,A ∈ Rn×n,B ∈
Rn×m and C ∈ Rp×n. So, in the case of rational matrix
interpolation, one possibility is to interpolate along specific
directions (otherwise, the dimension will scale with the
lengths of the input-output spaces). To avoid this, a viable
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way is to address the tangential interpolation problem, e.g.,
as shown in the handbook/tutorial works [1], [14], [15].

We are given a set of input/output response measurements
characterized by left interpolation points {µi}qi=1 ⊂ C, using
left tangential directions {ℓi}qi=1 ⊂ Cp, and producing left
responses {vi}qi=1 ⊂ Cm, together with right interpolation
points {λi}ki=1 ⊂ C, using right tangential directions:
{ri}ki=1 ⊂ Cm, producing right responses: {wi}ki=1.

We are thus given the left data subset (µj ; ℓj
T ,vT

j ),
j = 1, . . . , q, and also the right data subset (λi; ri,wi), i =
1, . . . , k. The goal is to find a rational p×m matrix function
H(s), such that the tangential interpolation conditions below
are matched:

H(λi)ri = wi, i = 1, . . . , k,

ℓTj H(µj) = vT
j , j = 1, . . . , q.

(3)

The left data subset is interpolation points rearranged as:

M = diag(µ1, . . . , µq) ∈ Cq×q,
LT = [ℓ1 · · · ℓq] ∈ Cp×q,

VT = [v1 · · · v1] ∈ Cm×q.

while the right data subset is arranged as:

Λ = diag(λ1, . . . , λk) ∈ Ck×k,
R = [r1 · · · rk] ∈ Cm×k,

W = [w1 · · · wk] ∈ Cp×k.

Interpolation points and tangential directions are determined
by the problem or are selected to realize given MOR goals.

ℓTj Ĥ(µj) = ℓTj H(µj) ⇒ ℓTj Ĥ(µj) = vj , j = 1, · · · , q,
Ĥ(λi)ri = H(λi)ri ⇒ Ĥ(λi)ri = wi, i = 1, · · · , k.

}

For SISO systems, i.e., m = p = 1, left and right
directions can be taken equal to one (ℓj = 1, ri = 1), and
hence the conditions above become:

Ĥ(µj) = H(µj) ⇒ Ĥ(µj) = vj , j = 1, · · · , q,
Ĥ(λi) = H(λi) ⇒ Ĥ(λi) = wi, i = 1, · · · , k.

}
(4)

A. Interpolatory projectors

For arbitrary values k, q, the matrices R ∈ Cn×k and
OT ∈ Cn×q defined below (known in the literature as
the tangential generalized controllability matrix, and respec-
tively, the tangential generalized observability matrix)

R =
[
(λ1E−A)−1Br1, · · · , (λkE−A)−1Brk

]
,

OT =
[
(µ1E

T −AT )−1CT ℓ1 · · · (µqE
T −AT )−1CT ℓq

]
,

will be used as projection matrices, in order to impose the
tangential interpolation properties introduced above.

The projected system is computed via a double-sided
projection-based approach, as below:

Ê = OER ∈ Cq×k, Â = OAR ∈ Cq×k, (5)

B̂ = OB ∈ Cq×m, Ĉ = CR ∈ Cp×k. (6)

III. THE LOEWNER FRAMEWORK

By following the derivations in [8], the reduced quantities
Ê and Â form a Loewner pencil, given by:

−Ê =


vT
1 r1−ℓT1 w1

µ1−λ1
· · · vT

1 rk−ℓT1 wk

µ1−λk

...
. . .

...
vT
q r1−ℓTq w1

µq−λ1
· · · vT

q rk−ℓTq wk

µq−λk

 := L, (7)

−Â =


µ1v

T
1 r1−ℓT1 w1λ1

µ1−λ1
· · · µ1v

T
1 rk−ℓT1 wkλk

µ1−λk

...
. . .

...
µqv

T
q r1−ℓTq w1λ1

µq−λ1
· · · µqv

T
q rk−ℓTq wkλk

µq−λk

 := Ls,

were L is a Loewner matrix, while Ls is a shifted Loewner
matrix. It also holds that

B̂ =

 vT
1
...

vT
q

 := V, Ĉ =
[
w1 · · · wk

]
:= W.

The resulting collection of data matrices (W, L, Ls, V) is
known as the Loewner quadruple.

Lemma 3.1: The following relations hold true:

Ls − LΛ = VR and Ls −ML = LW. (8)

Then, it directly follows that the Loewner quadruple satisfies
the Sylvester equations

ML− LΛ = VR−LW, MLs − LsΛ = MVR−LWΛ.
Theorem 3.2: (recalled from [1], [8]) Assume that q = k

and that the pencil (Ls, L) is regular1. Then H(s) =
W(Ls − sL)−1V, satisfies the tangential interpolation con-
dition (3).

Parameterization of all interpolants can be achieved by
artificially including a term K as shown in the next result.

Remark 3.3: The Sylvester equation for L can be rewrit-
ten as ML− LΛ = (V− LK)R− L(W−KR), where
K ∈ Cp×m together with a similar one for L̄s. Hence,(
W̄,L, L̄s, V̄

)
is an interpolant for all K ∈ Cp×m, where

L̄s = Ls + LKR, V̄ = V− LK, W̄ = W−KR.

A. Construction of interpolants

If the pencil (Ls, L) is regular, then E = −L, A =
−Ls, B = V, C = W, is a minimal interpolant of the
data, i.e., H(s) = W(Ls − sL)−1V, interpolates the data,
and it is of minimal degree.

Otherwise, problem (3) has a solution [8] provided that

rank [sL− Ls] = rank [L, Ls] = rank
[

L
Ls

]
= r,

for all s ∈ {λj} ∪ {µi}. Consider, then, the short SVDs:

[L, Ls] = YΣ̂rX̃
∗,

[
L
Ls

]
= ỸΣrX

∗,

1The pencil (Ls,L) is regular if there exists ζ ∈ C such that det(Ls −
ζL) ̸= 0.
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where Σ̂r, Σr ∈ Rr×r, Y ∈ Cq×r, X ∈ Ck×r, Ỹ ∈ C2q×r,
X̃ ∈ Cr×2k.

Remark 3.4: In practical applications, the value r can be
chosen as the numerical rank of the Loewner pencil, based
on a tolerance value τ > 0.

Theorem 3.5: (recalled from [1], [8]) The quadruple
(Ê, Â, B̂, Ĉ) of size r× r, r× r, r×m, p× r, given by:

Ê = −YTLX, Â = −YTLsX, B̂ = YTV, Ĉ = WX,

is a descriptor realization of an (approximate) interpolant of
the data with McMillan degree r = rankL.
The approximation relies on the choice of the value τ ; if this
value is indeed 0 (exact arithmetic), then the interpolation is
also exact. However, for τ ̸= 0, the interpolation errors are
proportional to τ (or to the first neglected singular value of
the Loewner matrix), as shown in [1], on page 359 (in the
error expression subsection).

Remark 3.6: (a) The Loewner framework constructs a
descriptor representation (W,L,Ls,V) from data, with no
further processing. However, if the pencil (Ls,L) is singular,
it needs to be projected to a regular pencil (A,E).
(b) By construction, the D term is absorbed into the other
matrices of the realization. Extracting the D term involves an
eigenvalue decomposition of (Ls,L), and a careful numerical
treatment of the spectrum at ∞.
(c) If the transfer function of the underlying system has
higher-order polynomial terms, then a more intricate pro-
cedure is needed to accurately recover these terms (behavior
at infinity) in the LF; some solutions were recently proposed
in [10], [11].

In the sequel, we follow the approach originally proposed
in [11], for estimating the polynomial terms from values of
the transfer function, sampled at so-called high frequencies.
There, what is proposed is to subtract the fitted polynomial
part from the original data, and perform classical Loewner
framework analysis (as in [8]) on the pre-processed data.

B. Estimating the polynomial terms from data in the LF [11]

We review in what follows results from [11]. We assume
that the transfer function of the underlying large-scale model
is composed of a strictly proper part and of a polynomial
part, in the following way H(s) = Hspr(s) +Hpoly(s). The
polynomial part is considered to have only two non-zero
coefficients (and as such, to be a linear polynomial in s). In
the widely-accepted terminology, this scenario corresponds
to a DAE of index 2, with the polynomial part as below:

Hpoly(s) = P0 + sP1, P0, P1 ∈ Rp×m. (9)

The main idea summarized in [11], is that by having access at
H(s) for large values of s, the contribution of Hspr(s) to the
transfer function is negligible; hence, it can be ignored. We
review some of the formulae presented in the aforementioned
contribution, first for only limited amount of data, and
afterwards, for many data points. The estimates of the two
coefficients will be denoted with P̂i, for Pi, where 0 ≤ i ≤ 1.
Also, for the first cases, no tangential directions will be used.

C. The case of a few data points [11]

We assume that the transfer function is known at one
value, jω, where j :=

√
−1 and ω ∈ R. Then, it holds

that:

P̂0 = Re(H(jω)), P̂1 = ω−1 Im(H(jω)). (10)

It is to be noted that, in order that these estimates to be
accurate, then ω needs to be a very large number; error
estimates and analysis is provided in [11]. Then, if two
sample values are known, i.e., at the points jω1 and jω2

on the imaginary axis, with ωk ∈ R for 1 ≤ k ≤ 2 (again,
which need to be large for the sake of accuracy of estimates).
As shown in [11], the following estimates hold true:

P̂0 = Re
(jω1H(jω1)− jω2H(jω2)

jω1 − jω2

)
, (11)

P̂1 =
H(jω1)−H(jω2)

jω1 − jω2
. (12)

D. The general case (many data points) [11]

Assume now that k = q ≥ 2 and that 2k interpolation
points, values, and tangential directions are provided. Instead
of the generic notation L for the Loewner matrix, we now
use the notation Lhi to indicate that this Loewner matrix is
computed with data located in high frequency ranges.

Provided that k ≥ max{p,m}, one can write the estimated
linear polynomial coefficient matrix as shown in [11], as:

P̂1 =
(
Lhi

)†Lhi
(
Rhi

)†
, (13)

where X† ∈ Cv×u is the Moore-Penrose pseudo-inverse of
the matrix X ∈ Cu×v .

Similarly to the procedure used for estimating P1, one
can extend the formula for estimating P0 from the shifted
Loewner matrix Lhi

s computed from 2k sampling points
located in high frequency bands as follows (as shown in
[11])

P̂0 = Re
((

Lhi
)†Lhi

s

(
Rhi

)†)
. (14)

IV. OTHER METHODS

Here, we will only go into details for direct methods,
which do not require an iteration (for a fair comparison with
[11]). It is to be mentioned that the Vector Fitting algorithm
in [16] is a robust, effective rational approximation tool based
on a least-square fit on the data, and also can be used to
accommodate up to linear polynomial terms (of the fitted
transfer function). However, we will not concentrate on this
here.

A. Antoulas-Anderson method with (higher) polynomial
terms

The rational approximant Ĥ(s) computed by the original
Antoulas-Anderson (AA) rational approximation approach in
[9] is based upon the classical barycentric form:

Ĥ(s) =

∑k
i=1

wihi

s− zi∑k
i=1

wi

s− zi

=
N(s)

D(s)
. (15)
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This representation generally enforces proper (deg(N(s)) ≤
deg(D(s))) or strictly proper (deg(N(s)) < deg(D(s)))
transfer functions. It is to be noted that the constant polyno-
mial term can be recovered as P̂0 =

∑k
i=1 wihi∑k
i=1 wi

.
However, we are interested in recovering improper transfer

functions, that can be written as proper rational functions
with linear polynomial terms. Hence, the following repre-
sentation of the fitted transfer function will be used instead:

Ĥmod(s) =
b+

∑k
i=1

wihi

s− zi∑k
i=1

wi

s− zi

. (16)

Clearly, the following interpolation conditions are enforced,
solely by the barycentric structure, as in the usual case (15):

Ĥmod(zi) = hi, ∀ 1 ≤ i ≤ k. (17)

In this context, the variables to be fitted are the weights
w1, w2, . . . , wk (all assumed to be nonzero) but also the free
term b ̸= 0 in the numerator.

As in in [9], to enforce additional q (left) interpolation
conditions given by:

Ĥmod(sj) = gj , ∀ 1 ≤ j ≤ q, (18)

one can write the problem explicitly for any 1 ≤ j ≤ q, as:

Ĥmod(sj) = gj ⇔
b+

∑k
i=1

wihi

sj−zi∑k
i=1

wi

sj−zi

= gj , ∀1 ≤ j ≤ q

(19)

⇔
k∑

i=1

gj − hi

sj − zi
wi − b = 0, (20)

or equivalently, in matrix format, as:
g1−h1

s1−z1

g1−h2

s1−z2
· · · g1−hk

s1−zk
−1

g2−h1

s2−z1

g2−h2

s2−z2
· · · g2−hk

s2−zk
−1

...
...

. . .
...

...
gq−h1

sq−z1

gq−h2

sq−z2
· · · gq−hk

sq−zk
−1




w1

w2

...
wk

b

 =


0
0
...
0
0

 .

(21)
This can further be simply written as L̃a = 0, where L̃
is the Loewner matrix with a column of −1’s augmented at
the end as in (21) and a is the vector of variables, i.e., a =[
w1 w2 · · · wk b

]T
. The k+1 unknowns in vector a

can be computed from the (approximate) null space, i.e., the
kernel of the matrix L̃. It is to be noted that the SVD of
matrix L̃ can be employed for this task.

In the case of not enough data, or noisy/perturbed mea-
surements, the last singular value of L̃ is seldom zero. By
setting up a tolerance value τ , one can compute a as the left
singular vector of L̃ corresponding to the smallest singular
value greater than τ . By finding the missing coefficients
in vector a, the fitted rational function will be uniquely
determined. Afterwards, if needed, the polynomial terms of
Ĥmod(s) can be explicitly explicitly in terms of the recovered
coefficients in vector a, the interpolation points, and transfer
function measurements. We skip this step here for brevity
reasons.

V. NUMERICAL EXAMPLES

A. A first example

We use the damped mass-spring system with a holonomic
constraint example (in short, MSD) from [3]. Although orig-
inally an index-3 DAE system, it can be transformed into an
index-1 DAE system by appropriately choosing the B and C
vectors. We denote the resulting full model transfer function
by HMSD and refer the reader to the original publication for
more details.

B. Oseen equations with Dirichlet control

We consider a flow example with boundary control mod-
eled by a finite element discretization of the incompressible
Oseen equations; see [17] for technical details regarding the
discretization of the equations and of the control and output
operators. The Oseen equations are obtained from the Navier-
Stokes equations by a Newton linearization about a steady
state solution. We will consider setups that, apart from the
boundary Γ where the control acts, have no-slip boundary
conditions at the walls or do-nothing conditions at the outlets.

The control ν(t, x), where t denotes the time and x
denotes the spatial variable distributed over the considered
boundary, is modeled as ν(t, x) = g(x)u(t) through a
function g : Γ → R2 that describes the spatial extension and
through a scalar function u that models the control action as
a scaling of g.

Overall, the spatially-discretized model for the velocity v
and pressure p reads[

M MΓ

] [ v̇(t)
v̇Γ(t)

]
=

[
A AΓ

] [ v(t)
vΓ(t)

]
+ J⊺p(t),

0 =
[
J JΓ

] [ v(t)
vΓ(t)

]
,

0 = vΓ(t)− bΓu(t),

(22)

where vΓ denotes the degrees of freedom in the discrete
velocity vector that are associated with the control boundary,
where the corresponding parts of the linear operators are
subscripted with Γ accordingly, and where bΓ is the spatially
discretized representation of g.

If one resolves vΓ(t) = bΓu(t) directly, the following
controlled linear system is obtained

Mv̇(t) = Av(t) + J⊺p(t) +AΓbΓu(t)−MΓbΓu̇(t) (23a)
0 = Jv(t)− JΓbΓu(t) (23b)

which we will write as

E ẋ(t) = Ax(t) + B1u(t) + B2u̇(t), (24)

with x = (v, p) and

E :=

[
M 0
0 0

]
, A :=

[
A J⊺

J 0

]
, (25)

and
B1 =

[
AΓbΓ
JΓbΓ

]
, B2 =

[
−MΓbΓ

0.

]
(26)

As laid out in [12, Sec. 5], depending on how the output

y(t) = Cvv(t) + Cpp(t) (27)
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Fig. 1. Snapshot of magnitude of the steady-state Navier-Stokes velocity
solution in the considered setup.

is defined, the transfer function u 7→ y associated with the
system (23) can be strictly proper, proper, or include a linear
part. In particular, if Cp ̸= 0, i.e., the measurements include
the p-variable, then the transfer function will likely have a
polynomial part of degree one.

C. The particular setup

We consider the flow past a cylinder in two dimensions
at Reynolds number 20 calculated with the averaged inflow
velocity and the cylinder diameter as reference quantities;
see Fig. 1 for a velocity magnitude snapshot.

As the control input, we consider a modulation the input
velocity around its reference value. As the observation, we
consider a single output yp of the pressure or the single
output yv of the sum of the two velocity components
averaged over a square domain of area d2 located 10d behind
the cylinder in the wake, where d is the cylinder diameter.

The spatial discretization is obtained by Taylor-Hood
piecewise quadratic/piecewise linear finite elements on an
unstructured triangulation of the domain which results in
around 42000 degrees of freedom for the velocity and 5000
degrees of freedom for the pressure.

The linearized model is obtained from linearizing the
system about the corresponding steady-state solution. Thus,
the obtained input/output map models the linear response to
a changing input velocity in the measurements in the wake;
see Fig. 2 for an illustration of the response in time domain.
For the presented results on transfer function interpolation,
we consider the yp output only, i.e.

HOS(s) := Cp(sE − A)−1(B1 + sB2), (28)

with Cp =
[
0 Cp

]
.

D. Numerical Results

For further reference, we denote the Antoulas-Anderson
approach with polynomial terms (see Sec. IV-A) by
poly-AAand the Loewner with explicit matching by (see
Sec. III-B) by poly-Loewner.

We investigate the performance of the poly-AA approach
for the MSD and the Oseen example by comparing to a
plain Loewner interpolation and the Loewner approach with
explicit identification of the constant and the linear term in
Sec. III-B. The parameters for the approximations are chosen
as follows:

• For determining the polynomial part in
poly-Loewner, we consider the range
[107j, 109j] ⊂ jR and 20 or 10 for the MSD or

Fig. 2. Time-domain linear response of the Oseen system for a test output
set to zero for t ≥ 2. Notably, and in line with the theory, the resulting
impulse is observed in the pressure output yp but not in the velocity output
yc.

Oseen example, respectively, evenly (on the logarithm-
scale) distributed interpolation points.

• For determining the proper part in the plain Loewner
(and the poly-Loewner), we consider 200 or 40
interpolation points (for MSD or Oseen respectively)
evenly log-distributed on [10−2j, 104j] ⊂ jR.

• The order r of the identified is inferred by truncating
all singular values smaller than the relative tolerance
10−10.

• To compute the poly-AA interpolation, for both setups,
we used 120 interpolation points, defined as 48 and 12
left and right interpolation points evenly distributed on
[10−3j, 106j] ⊂ jR plus their complex conjugates.

The simulation results are shown in Fig. 3 (MSD example)
and Fig. 4 (Oseen example).

In both examples, the frequency response of the full model
and approximations are visually indistinguishable. The plots
of the relative errors, however, reveal the qualitative differ-
ence between the plain Loewner approach (which does not
capture the linear behavior that dominates for high frequen-
cies) and poly-Loewner and poly-AA as well as quanti-
tative differences between poly-Loewner and poly-AA.
While the good performance of poly-AA in the low-
frequency regime (and the indifferent performance in the
mid-frequency range) are likely be explained by the number
and choice of interpolation points, we attribute the reliably
worse performance of poly-AA for high-frequencies to the
all-at-once determination of proper and non-proper compo-
nents (cp. Eq. (21)) of the transfer function.

Code Availability

The linear system data (in the form of a .mat file)
and the scripts that were used to obtain the presented
numerical results are available for immediate reproduc-
tion from https://dx.doi.org/10.5281/zenodo.
10058537 under a CC-BY license.
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Fig. 3. Frequency responses of the MSD full order model and reduced
order models (top) and the relative errors (bottom).

Fig. 4. Frequency responses of the Oseen full order model and the reduced
order models (top) and the relative errors (bottom).

VI. CONCLUSION

We have proposed a variant of Loewner-based system
identification based on the Antoulas-Anderson algorithm but
with free parameters to account for non-proper parts. In
this approach, polynomial parts of the transfer function
are implicitly covered, which is advantageous over explicit
treatments of the polynomial parts that requires data points at
sufficiently large frequencies. As a drawback of the implicit
realization, the determination through, say, the singular value
decomposition, gives little error control on the individual
coefficients and, thus, lead to a larger approximation error
in the high frequency range. On the other hand, the equal
treatment of all interpolation points gives way to consider
adaptive versions of the poly-AA approach as in the adap-
tive Antoulas-Anderson algorithm; see [18]. Another future
investigations will concern extensions of the poly-AA ap-
proach to possibly higher polynomial terms.
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S. Schöps, Eds. Springer, 2020, pp. 185–210.

[12] M. I. Ahmad, P. Benner, P. Goyal, and J. Heiland, “Moment-matching
based model reduction for Navier-Stokes type quadratic-bilinear de-
scriptor systems,” Z. Angew. Math. Mech., vol. 97, no. 10, pp. 1252–
1267, 2017.

[13] P. Benner and J. Heiland, “Time-dependent Dirichlet conditions in
finite element discretizations,” ScienceOpen Research, pp. 1–18, 2015.

[14] D. S. Karachalios, I. V. Gosea, and A. C. Antoulas, “The Loewner
framework for system identification and reduction,” in Model Order
Reduction: Volume I: System-and Data-Driven Methods and Algo-
rithms. De Gruyter, 2021, pp. 181–228.

[15] I. V. Gosea, C. Poussot-Vassal, and A. Antoulas, “Data-driven mod-
eling and control of large-scale dynamical systems in the Loewner
framework,” Handbook of Numerical Analysis, vol. 23, pp. 499–530,
2022, Numerical Control: Part A.

[16] B. Gustavsen and A. Semlyen, “Rational approximation of frequency
domain responses by vector fitting,” IEEE Trans. Power Del., vol. 14,
no. 3, pp. 1052–1061, 1999.

[17] M. Behr, P. Benner, and J. Heiland, “Example setups of Navier-
Stokes equations with control and observation: Spatial discretization
and representation via linear-quadratic matrix coefficients,” Tech.
Rep., 2017. [Online]. Available: http://arxiv.org/abs/1707.08711
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