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Abstract—We propose an optimization method to place elec-
tric vehicle charging stations to minimize total travel time,
thereby minimizing additional congestion and detours caused
by the chargers. For a tractable optimization scheme, we frame
the drivers’ route choices as a congestion game that allows us
to find equilibrium flows for each candidate set of locations.
Our contribution has two primary components. First, we refine
the modeling of driver cost functions to account for charging
needs as well as travel time, and introduce different agent
types based on their unique valuations of charging benefits.
Second, we address the exponential growth of the search space
of charger locations with a greedy optimization approach. We
demonstrate with numerical experiments that: (i) the congestion
game formulation allows us to efficiently compute equilibrium
flows for each candidate charger placement; (ii) the greedy
approach can closely approximate the optimal selection.

I. INTRODUCTION

The number of electric vehicles (EVs) is growing at an
unprecedented rate [1]. The United Nations’ Paris Declara-
tion on Electro-Mobility and Climate Change set a target
of 100 million electric vehicles by 2030 [2]. The United
States, in particular, aims for half of new vehicles sold to
be zero-emission vehicles by 2030. The recent California
legislation [3] stipulates that all passenger vehicle sales
be zero emission by 2035, which requires a momentous
expansion in the charging infrastructure. California Energy
Commission predicts [4] that the state would need nearly
1.2 million public and shared chargers by 2030 to meet the
fueling demands of the 7.5 million passenger plug-in EVs
anticipated to be on California roads. An additional 157,000
chargers would be needed to support the 180,000 medium-
and heavy-duty vehicles anticipated for 2030.

There are many challenges to such dramatic enlargement
of the EV charging infrastructure in a short time [5]. First,
major investments would be needed for the power distribution
system; currently, the grid capacity severely limits where
EV chargers can be placed [6]–[9]. In addition, zoning
approvals and permits for chargers take a long amount of
time. Therefore, for the foreseeable future, the number of
chargers are unlikely to match the increased number of EVs
on the roads, potentially leading to queues and disruption to
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nearby traffic. In addition, detours to limited charger locations
may add significant travel time.

To mitigate these problems, here we present a method
to place EV chargers wihin a set of candidate locations to
minimize the total travel time. The travel time depends on
equilibrium traffic flows, which are determined by drivers’
route choices. For an efficient formulation of route choices,
we use the formalism of congestion games, whereby the
travel time through each link is modeled as a delay function
that depends on the flow on that link. We augment this
formulation with additional links to model the travel time
through chargers. In addition, we classify the types of drivers
according to the benefit they derive from charging and define
an appropriate cost function that subtracts the benefit from
the travel time on the selected route.

Using this congestion game formalism, we devise a com-
putationally tractable optimization scheme that consists of
two layers. The inner layer computes equilibrium flows for
given charger locations by solving a convex optimization
problem. This layer makes use of a potential function of
the game, derived from the cost functions mentioned above,
which are shown in the paper to be convex. The outer layer
uses the result of the inner layer to compute the total travel
time for all drivers corresponding to each candidate set of
charger locations and, then, selects the minimum. This layer
can become intractable for large networks, as the search space
expands exponentially with the size of the set of candidate
locations. To address this problem, we pursue a greedy search
algorithm where we place one charger at a time. We then
show with numerical experiments that the greedy approach
can closely approximate the optimal selection.

In the literature, optimal placement of public chargers
has been studied from the perspectives of charging stations
operators, EV users, and power distribution network oper-
ators [10]. The objective functions considered include cost
of construction, power loss, and voltage deviation [11]–[17].
What distinguishes our study is the focus on the impact of EV
chargers on traffic congestion and detours, which is mitigated
by minimizing the total travel time.

The paper also adds to the literature on congestion games
[18], [19], [20], [21], [22], [23] – a class of games where
payoff of a resource to each player depends on the number of
players choosing the same resource. These games have been
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studied extensively for vehicle traffic and communication net-
works, market competition, and ecosystems. Multiple players
seek resources, with each player selecting a subset (e.g.,
a route in traffic networks) that influences delays on those
resources. We contribute a new application to the existing
congestion game literature, as well as a paradigm to model
chargers within this framework with additional network links
and delay functions. We also show that this congestion game
remains a potential game with a convex potential function
despite our modification of the cost functions.

The paper is structured as follows: Section II.A introduces
the road network model for the congestion game formulation,
and Sections II.B augments it with charging stations. Section
II.C present the game theoretic formulation. Section II.D
establishes the existence of a Nash equilibrium and details
its identification through a potential function. Section II.E
outlines a practical, greedy approach to determine optimal
EV charging station locations. Section III explains our ex-
perimental methodology, and Section IV reports the results
of these experiments. Section V reviews the conclusions.

II. EV PLACEMENT AS A CONGESTION GAME

We model EV placement within a congestion game frame-
work, so we can assess the total delay at equilibrium for
each candidate placement and choose the placement that
minimizes delay. For traffic problems the resource is the road
network and the cost to a driver is the time it takes to travel
from the origin to destination, minus the benefit of battery
charging. Due to the non-atomic nature of the problem, the
delay on each road link is a function of total flow on that
particular link. We model chargers as additional links in the
network, with associated delay.

A. Model of the road network

• The road network is represented as a directed graph G =
(V,A) where V is the set of nodes and A is the set of
links.

• Time to travel through link l ∈ A is represented as
dl(xl), where xl is the flow on link l. We refer to dl
as the delay function, assumed to be a non-decreasing
function on xl.

• Given a path s, the total delay is additive and equal to∑
l∈s dl(xl). We represent the flow for agent of type i

on route si ∈ Si as xi
si .

• We assume a continuum of agents where the type set is
N and if pi represents the proportion of agents of type
i then

∑
i∈N pi = 1.

• Each agent type i ∈ N is traveling from an origin
(represented as Oi) to a destination (represented as Di).

• Si represents the set of routes (paths connecting Oi to
Di) for agents of type i.

B. Adding EV charging stations to the model

• We denote by Vc ⊆ V the set of candidate nodes where
an EV station can be placed.

• We represent a charger at node v ∈ Vc as an additional
link from v to itself, (v, v). If a route includes the link
(v, v) this means that the EV stops at v to charge.

• For the same O/D pair, EV-players’ paths will include
exactly one charging link if they are charging. We
assume that the vehicle does not stop more than once
at a charging station. This is reasonable for local road
networks where charging once is sufficient.

• The amount of time spent at charging station is repre-
sented as a non-decreasing function dl(x(v,v)) and add
it to the total delay on the path that includes it.

• The set of the self directed, charging, links is represented
by A′.

Note that the road links and chargers are both modeled as
links, with associated delay functions. These functions are
assumed to be non-decreasing, as increased volumes on road
links or chargers imply longer times to get through them.

C. Agent types and cost functions

We consider a non-atomic setup with agents types parti-
tioned into three sets, represented as F1, F2, F3.

• F1: Agents who do not require charging, e.g., vehicles
with gasoline engines or EVs with abundant charge for
the trip. These agents’s strategy set is the set of paths that
do not include a link (v, v) corresponding to a charging
station at node v.

• F2: Agents who need to charge. Their strategy set will
be of paths that pass through one charging node v
and that includes the link (v, v). We assume that these
vehicles will stop at exactly one charging station and
will not leave before charging finishes.

• F3: Agents who will benefit from charging but also can
finish their trips without charging. The amount of benefit
can change between the types in this set. (The agents in
the set F1 can also be thought as agents in set F3 that
has no benefit from charging).

While agent types in F1 and F2 are similar in the sense
that they try to pick the route with minimum delay, the agents
in the third set decide whether the additional benefit from
charging outweighs a longer route delay. We represent the
cost for agent type i when taking route si ∈ Si as ui(si).
For agent types in F1 and F2 the cost of a route si is

ui(si) =
∑
l∈si

dl(xl).

A path for type in F1 will not include a self directed charging
link while, for type in F2, si will contain exactly once
such link. For agent types in F3, if the route si does not
include a charging link then the cost function will be the
same,

∑
l∈si

dl(xl); otherwise, it will have an additional term
ci representing the benefit of charging for agent sub-type i
hence the cost will be

∑
l∈s3

dl(xl)− ci and

ui(si) =
∑

l∈si−A′

(dl(xl)− 1(l ∈ A′)ci)

where 1(l ∈ A′) represents an indicator function.
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D. Nash Equilibrium computation

In this subsection we discuss how we obtain the Nash
Equilibrium for fixed EV charger locations. In the next
subsection we use these equilibria to estimate the total delay
for each candidate location.

Since the players choose paths to minimize their cost, s∗

is a Nash Equilibrium (NE) if

ui(s∗i ) ≥ ui(si)

for all agent types i and feasible paths si ∈ Si.
To find the equilibrium points in our model we use the

following potential function:∑
l∈A

∫ ∑
i x

i
l

0

dl(x) dx−
∑
l∈A′

∑
i∈F3

cix
i
l (1)

This is an extension of the well-known Beckmann potential
and the optima of the following formulation are the Nash
Equilibria. We minimize (1) wrt. flow constraints that is, for
each agent type, the total amount of flow over the set of
feasible paths must carry the whole agents of type i:

minimize
∑
l∈A

∫ ∑
i x

i
l

0

dl(x) dx−
∑
l∈A′

∑
i∈F3

cix
i
l (2)

subject to
∑
si∈Si

xi
si = 1,∀i ∈ N (3)

The following theorem uses the convexity of this extended
potential to ascertain the correspondence between the mini-
mizers and Nash equilibria:

Theorem 1: Extended potential function (1) is convex and
every minimizer s∗ of (2) is a Nash Equilibrium.

Proof 1: Given the delay functions dl are non-decreasing,
the summation over their integrals,

∑
l∈A

∫∑
i x

i
l

0
dl(x) dx,

is convex. Since
∑

l∈A′
∑

i∈F3
cix

i
l is linear, 1 is convex.

For some agent type i let si ∈ Si improves over s∗i (path
that optimizes the potential). If i’s type is in F1 ∪ F2

then
∑

l∈si
dl(xl) <

∑
l∈s∗i

dl(xl), if the agent’s type is in
F3 then

∑
l∈si

dl(xl) − ci
∑

l∈A′∩si
xl <

∑
l∈s∗i

dl(xl) −
ci
∑

l∈A′∩s∗ xl . If we increase flows in si by δ while
decreasing the flows in s∗i by the same amount the flow con-
straints will still be satisfied. However, for sufficiently small
δ, the potential function will change by δ(

∑
l∈si

dl(xl) −∑
l∈s∗i

dl(xl)) < 0 for i ∈ F1 ∪ F2 and δ(
∑

l∈si
dl(xl) −

ci
∑

l∈A′∩si
xl −

∑
l∈s∗i

dl(xl) − ci
∑

l∈A′∩s∗ xl) < 0 if
i ∈ F3. Hence, we would have a feasible flow where the
value of the potential function is smaller, which leads to a
contradiction. We conclude that every minimizer of 2 is a
Nash Equilibrium.

Lemma 1: There exists an equilibrium for the congestion
game.

Proof 2: Given the flows being bounded, 2 always has
a minimizer. From proposition 1 all the minimizers are NE
which concludes the proof.

Since (2) can be solved as a convex optimization problem,
this allows us to find NE points efficiently.

E. Optimal EV charger placement

Let S ⊆ Vc be a selection of nodes for placing the EV
stations and x∗(S) be the Nash Equilibrium equilibrium flow
for that selection. The optimal EV placement problem can be
defined as follows.

minimize
∑
l

(x∗
l (S)dl(x

∗
l (S))) (4)

subject to S ⊆ Vc, ∥S∥ = c (5)

In words, minimize the total delay experienced by the users
over all of the possible selection of c ev charging station
locations from the candidate set.

Finding the optimal subset can be a challenging task,
particularly because the search space expands exponentially
with the size of the set V. However, for the purposes of this
paper, we introduce a greedy approach given in algorithm1.
Our approach consists of adding EV nodes incrementally, one
at a time. At each step, we identify the location that yields
the greatest improvement in the objective at the equilibrium
point, and add it to the set of nodes. We should mention
that this is the scalable approach, but for smaller networks,
alternative methods can be explored.

Algorithm 1: Greedy EV station Placement
Input: Set of candidate locations V , required number

of EV stations nev , road network (V,A), link
delay functions dl(), agent types/strategy
sets/utility functions.

Output: Selection of EV stations Vo ∈ V ,
∥Vo∥ = nev .

1 Vo ← ∅;
2 while ∥Vo∥ ≤ nev do
3 for e ∈ V \ Vo do
4 x̂e ← minimizer of 2 for Vo ∪ {e} as the set

of ev locations;
5 cd(e)← cumulative delay at x̂e ;
6 end
7 e∗ ← minimizer of cd(e) over all V \ Vo;
8 Vo ← Vo ∪ {e∗}
9 end

10 return Vo;

III. EXPERIMENTS

We conducted numerical experiments using a grid net-
work with bidirectional links connecting the nodes. In each
experiment, we selected a subset of possible locations for
charger placements, and positioned the chargers as self-links,
meaning that the charger’s start and end points were the same.

To determine the potential routes for a given Origin-
Destination (OD) pair, we employed four distinct paths, all
of which represented the shortest paths with slight variations.
The first path follows an up-down trajectory until it aligns
with the same vertical position, and then proceeds with a
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right-left movement until reaching the target. The second path
uses the same algorithm but in reverse order, commencing
with right-left and concluding with up-down. The remaining
two routes are constructed similarly, but they follow a zigzag
pattern instead of proceeding all the way to the same vertical
or horizontal position. In these zigzag paths, the route ad-
vances one step at a time, changing direction until it reaches
the target.

We considered two types of cars for each OD pair: those
requiring charging and those that do not. In our simulations,
we maintained a ratio of one car needing charging for every
two cars that did not. Those in need of charging had to find
a charger en route before reaching their destination, resulting
in different routes compared to those who did not require
charging.

To determine the potential routes involving chargers for a
given OD pair, we introduced an additional route generation
method. This involved identifying all connecting pairs be-
tween the origin and the charger, as well as finding the paths
linking the charger to the destination. We then combined all
possible combinations of these two distinct routes to generate
all potential routes between the origin and destination. This
process was repeated for all chargers, and the resulting routes
were added to the corresponding OD pairs’ route options.

For our experiments, we exclusively created OD pairs
among the first and last rows, and each route was bidirec-
tional, meaning for each Origin-Destination pair (OD), there
was a corresponding Origin-Destination pair (OD*) where
the roles of origin and destination were reversed compared to
OD. However, to simulate traffic patterns during rush hours,
we specifically focused on scenarios where a significant
portion of the population traveled from the top row to the
bottom row. The ratio of those traveling from top to bottom
compared to those traveling from bottom to top was set at 10.
We generated random demands for each OD pair and scaled
this demand according to the ratios mentioned above for the
corresponding OD pairs. For the delay function we use the
Bureau of Public Roads (BPR) function [24], defined as

dl(xl) = 1 + a
(xl

b

)c

(6)

For the experiments we conducted on grid network, we
chose a = 0.15, b = 1, c = 4 for simplicity and its wide
use. In our experiments, two types of optimizations were
implemented. The inner optimization aimed to find the Nash
equilibrium of the route flows by optimizing the sum of the
objective function of the link flows. The outer optimization,
on the other hand, sought to determine the optimal charger
locations once the Nash equilibrium was reached for the link
flows, thanks to the inner optimization. As a result, the inner
optimization was performed multiple times.

For the inner optimization algorithm, we utilized the
“Trust-Region Constrained Algorithm” implemented in the
Scipy [25] optimize package which uses “Byrd-Omojokun
Trust-Region SQP method“ which is described in [26]. We
also provided the Jacobian and Hessian of the objective

function to enhance numerical convergence. This method
was chosen because it is recommended for linear equality-
constrained and large-scale problems. Our optimization prob-
lem featured linear equality constraints since total flow on
possible routes of a given OD pair needed to match the
demand of the corresponding OD pair, and the objective
function (1) is a convex function. In our experiments, as
shown in Table I, the problems were high-dimensional,
with the decision variable, route flows, having around 300
dimensions.

We initiated the decision variables (route flows) for each
inner optimization process by evenly distributing the given
demand for an OD pair across all possible routes connecting
the OD pair. Our expectation was to see more evenly dis-
tributed link flows after optimization by optimal utilization
of each link and mitigating congestion after the optimization.
In Figure 1, we have plotted the variance of the link flows
for each potential charger combination before and after the
optimization. It is evident from the graph that the optimiza-
tion process reduces variance and effectively spreads the flow
throughout the network, potentially alleviating congestion.

Figure 1: Variance of the link flows before and after the
inner optimization. Note that the link flows are more evenly
distributed after the optimization.

In contrast, the outer optimization considered all poten-
tial charger locations. In Table I we present the results of
complete optimization and the greedy optimization approach,
where we initially optimized the use of a single charger
and iteratively fixed the charger’s position based on the best
results, repeating this process until all necessary chargers
were placed. After the greedy optimization was completed,
we continued to compute travel times for all possible charger
locations for reference.

We executed our experiments using Google Colab, and
you can find the code, plots, and videos of the optimization
process at the following link: 1

1https://github.com/YasinSonmez/Grid-Network-Charger-Placement

696



Figure 2: Optimization results. Top two plots illustrate the
inner optimization to find equilibrium flows. The bottom two
plots show the outer optimization results.

Grid Size(n) 6×6 6×6 7×7 8×8 10×10
#Links 120 120 168 224 360

#OD Pairs 4 8 8 8 8
#Possible Charger

Locations p
10 10 10 10 11

#Chargers c 4 4 4 4 5
#Combinations

(p
c

)
210 210 210 210 462

#Routes
µ ± σ

158 ± 26 305 ± 17 347 ± 19 376 ± 21 501 ± 30

Greedy Opt. ↓
Result (Time) 1.008 (63s) 1.026 (145s) 1.017 (236s) 1.008 (274s) 1.000 (520s)

Full Opt. Result ↓
µ ± σ
Time

1.066 ±0.043
588s

1.078 ±0.0039
2055s

1.084 ±0.037
2800s

1.256 ±0.181
3421s

1.200 ±0.144
12963s

Table I: The outcomes of optimization for all possible se-
lections of c charging locations are shown. Travel times are
normalized to the minimum across all selections. The final
row displays the average and standard deviation, with the
time required for the full optimization in the second row.

IV. RESULTS

The experimental results demonstrate that the greedy ap-
proach closely approximates the global optimum. For the
grid networks utilized for the experiments, employing the
greedy EV station placement method resulted in an average
reduction of approximately four percent in the total travel
time caused by traffic congestion (Table I). Notice that
the overall computation time is primarily influenced by the
number of routes, as this determines the dimension of the
optimization problem for the extended potential function, and
the number of potential combinations, which in turn dictates
how many times the inner optimization is executed.

Table I presents the results and computation time for
both the greedy optimization algorithm and the exhaustive
search over all possible selections of EV charging stations
to evaluate how effectively the greedy algorithm performs.
Additionally, the mean and standard deviation of the results
over all selections of c chargers are provided for the family of
selection sets. All travel times are normalized to the minimum
travel time over all possible selections of ev charging stations.
We see around 1% difference on average between the greedy
optimization and the global minimum whereas the mean of
all possibilities is 14% worse than the minimum on average,
all while significantly reducing computation time to less than
around one-tenth on average when employing the greedy
optimization approach.

We further observe in Figure 1 that the greedy selection
leads to a more even distribution of the flow. This outcome
is unsurprising, as the delay on each link experiences expo-
nential growth as the flow on each link approaches the link’s
capacity. Therefore, in order to minimize overall congestion,
it is crucial to distribute traffic flows as uniformly as feasible.
We further see that the greedy approach scales well with the
network size and the number of OD pairs.

In Figure 2 we report the results of an experiment we
conducted. The top two graphs illustrate the alteration in link
flows within the grid before and after the inner optimization.
The thickness of the arrows represents the link flows and
the thickness of orange circles represents the number of cars
that use that specific charger. The third graph depicts the
temporal progression of the outer optimization, with vertical
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lines denoting the completion of optimization for specific
charger quantities. The last plot showcases the cumulative
travel time for all combinations tested.

V. CONCLUSION

We formulated EV charging station placement as an op-
timization problem that aims to minimize total travel time,
thereby mitigating the impact of chargers on congestion and
detours. We framed the drivers’ route choices as a conges-
tion game, which enabled us to compute equilibrium flows
efficiently in the inner optimization layer. The outer layer
uses the delays at equilibrium for each candidate placement
to find the optimal placement. Next, to ensure scalability, we
proposed a greedy optimization algorithm for the outer loop.
In numerical experiments the greedy approach was able to
closely approximate the true optimal within 1% on average,
whereas a random choice is expected to be 14% worse on
average. However, this comparison was possible for small-
scale networks where we can compute the actual optimum.

The next task will be to test the results on realistic traffic
networks using microscopic traffic simulators and available
demand data. Another research direction is to derive theoret-
ical bounds on the closeness of the greedy optimization to
the true optimum.
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