
Enhancing 3D Trajectory Tracking of Robotic Manipulator Using

Sequential Deep Reinforcement Learning with Disturbance Rejection

Saikat Majumder and Soumya Ranjan Sahoo

Abstract— This paper addresses the problem of trajectory
tracking for robotic manipulators in three-dimensional space.
We use Deep Deterministic Policy Gradient (DDPG), a model-
free deep reinforcement learning technique, with a sequential
training to significantly expedite the training process. The
reward function is a key component in reinforcement learning.
Our proposed design is particularly tailored to handle external
disturbances. This feature ensures robust performance and
adaptability, which is crucial for real-world applications of
robotic manipulators in dynamic environments. To evaluate
the effectiveness and efficiency of our approach, we present
comprehensive numerical simulation results. These results not
only demonstrate the capability of our model to facilitate a
faster training rate but also showcase a remarkable reduction
in the tracking mean square error (MSE).

I. INTRODUCTION

In recent years, Deep Reinforcement Learning (DRL)

has emerged as a powerful and popular paradigm in the

field of artificial intelligence and robotics. This cutting-edge

approach has the remarkable ability to tackle complex tasks,

making it a focal point of research and development. DRL

represents the fusion of Reinforcement Learning (RL) and

Artificial Neural Networks (ANNs), ushering in a new era

of intelligent systems. A pivotal moment in the rise of DRL

came when DeepMind, a renowned AI research organization,

harnessed this technology to develop groundbreaking DRL

agents [1]. These agents learned to master the Atari 2600,

using only the raw pixel data from the game screen as input.

Another prominent example of DRL’s success is AlphaZero

[2] that excels in strategic board games like chess, shogi, and

go, rivaling and often surpassing human-level performance.

DRL is not confined to the virtual world of gaming;

it extends its influence to real-world applications as well.

One particular DRL technique, known as Deep Deterministic

Policy Gradient (DDPG), has proven to be invaluable in

addressing the challenges of high-dimensional control spaces

[3]. This technique offers a promising avenue for devising

control strategies for robotic manipulators, which play a piv-

otal role in various fields [4], [5], [6]. Robotic manipulators

are extensively employed where they can perform laborious

and often hazardous tasks that are unsuitable for humans. In

each of these applications, precision in motion control is of

paramount importance.

Traditional control methods, such as adaptive control

[7], fuzzy control [8], and robust control [9], have been

Saikat Majumder and Soumya Ranjan Sahoo are with the Department
of Electrical Engineering, Indian Institute of Technology, Kanpur, India
{saikatm21, srsahoo}@iitk.ac.in

previously utilized for robotic manipulators. Traditional ap-

proaches to controlling robotic manipulators come with

numerous limitations when dealing with unstructured sce-

narios, relying heavily on environmental models. When the

environment undergoes alterations, it necessitates the recon-

struction of both the manipulator’s mathematical model and

the environment itself [4]. To overcome these challenges

and adapt to diverse and dynamic environments, researchers

have turned to Reinforcement Learning (RL). This allows

robotic manipulators to learn from their interactions with the

environment, making them more adaptable and robust.

In recent research, several papers have addressed the

challenging task of trajectory tracking in the context of

robotic systems. Authors in [5] introduced an improved

version of the Deep Deterministic Policy Gradients (DDPG)

algorithm, known as Distributed DDPG, to enhance the

trajectory tracking performance of SCARA robots. Similarly,

in [10], trajectory tracking was demonstrated for a two-

link robot manipulator. In [11], the researchers proposed a

controller that combines traditional control laws with Deep

Reinforcement Learning (DRL) techniques for a 3 degree-of-

freedom (DoF) manipulator. However, it’s worth noting that

none of the study considered external disturbances, which are

often encountered in real-world applications. This leaves an

open challenge for future research in the field of reinforce-

ment learning for robotics control, where the integration of

effective disturbance rejection strategies remains a critical

area of investigation in conjunction to DRL.

In this paper, the goal is to create a control system based

on DRL such that an n-link robotic manipulator tracks a

desired trajectory in 3-dimension even in the presence of

bounded external disturbances. The following is the major

summary of this paper:

• An adaptive control approach based on DDPG, which

has adaptability and precise 3 dimensional trajectory

tracking capacity, is proposed for manipulator system.

This adaptive method takes into account the effect of

nonlinearity, uncertainty and also time-varying external

disturbances in the dynamic model.

• A reward function is proposed which ensures DDPG

agent learns effectively and steadily.

• Networks are trained sequentially for fast learning.

• The efficacy of the proposed method is demonstrated

by simulation results.

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2505

Fig. 1: Controller set up for Robotic Manipulator

II. CONTROL DESIGN FOR AN n-LINK ROBOT

MANIPULATOR

A. Dynamic Model

The dynamics of an n-link robotic manipulator is deter-

mined by the relationship between joint control input (τ ∈
R

n), external disturbance (τd ∈ R
n), angular position (θ ∈

R
n), angular velocity (θ̇ ∈ Rn), and angular acceleration

(θ̈ ∈ Rn) [12], as expressed in (1):

M(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = τ + τd. (1)

Here, M(θ) ∈ R
n×n represents the manipulator mass

matrix, C(θ, θ̇) ∈ Rn×n accounts for centrifugal and Cori-

olis effects, and G(θ) ∈ R
n denotes the gravitational

force. M(θ) is invertible due its symmetry and positive

definiteness. So, (1) is reformulated as:

θ̈ = M
−1(θ)

[

−C(θ, θ̇)θ̇ −G(θ) + τ + τd

]

(2)

The assumptions made for this mathematical model are as

follows:

A1: The robot arms are rigid and symmetric.

A2: The center-of-gravity (CoG) of each robotic arm coin-

cides with its centroid.

A3: External disturbances are bounded.

A4: The maximum torque exerted by the motor (actuator)

at a joint is τmax.

A DDPG Actor-Critic Network has been employed for the

controller design of the robotic manipulator, as depicted in

Figure 1. The training process uses a sequential approach. In

the following sections, we elaborate on the DDPG learning

law and our training method for the manipulator controller.

B. DDPG learning law

The learning process of the DDPG algorithm, described

in [3], involves training the Critic network, denoted by

the action-value function Q(s, τ |φQ), using the Bellman

equation similar to the Deep Q-Network (DQN) [1]. Let sk
represent the state vector at time step k. Utilizing sk and the

control input τk = π(sk|φ
π) at step k, the subsequent state

(sk+1) and the reward rk are determined within each episode

lasting from 0 to T seconds.

After certain number of steps, the Actor-Critic network

undergoes updates leveraging rewards and Q-values at each

step. Consider NT to be the total number of steps in an

episode, where each time step size is of T/NT seconds. The

Q-value at step k for k ∈ {0, 1, 2....NT }, derived from the

Critic-Network, is denoted as Q(sk, τk|φ
Q). The desired Q-

value at step k is computed as:

Qd
k = rk + γQ(sk+1, τk+1|φ

Q) (3)

Here, γ represents the discount factor (0 ≤ γ ≤ 1), rk =
r(sk, τk) is the reward at step k. The Critic-Network updates

occur through gradient descent, minimizing the loss function,

L given in (4).

L =
1

N

N
∑

i=k

(Qd
k −Q(sk, τk|φ

Q))2. (4)

Simultaneously, the Actor-Network updates are based on the

expected return J , where,J = Erk,sk∼g,τk∼π[Rk] (g signify-

ing the environment) and Rk =
∑N

i=k γ
(i−k)r(sk, τk). The

gradient for the update of the Actor-Network is given by

∇φπJ ≈ E[∇φπQ(s, τ |φQ)|s=sk,τ=π(sk|φπ)] (5)

=E[∇τQ(s, τ |φQ)|s=sk,τ=π(sk)∇φππ(s|φπ)|s=sk]

≈
1

N

N
∑

i=k

∇τQ(s, τ |φQ)|s=sk,τ=π(sk)∇φππ(s|φπ)|s=sk (6)

Furthermore, in [3] DDPG employs a target network similar

to DQN, with the network parameters updated through

exponential smoothing as follows:

φQ′

← ρφQ + (1− ρ)φQ′

φπ′

← ρφπ + (1− ρ)φπ′

To ensure gradual and stable changes in the target network,

the hyperparameter ρ is set such that 0 < ρ << 1.

C. Proposed Training approach

In this paper, we adopt a dual Actor-Critic network strat-

egy to enhance the training process. Instead of relying on

a single Actor-Critic network for direct 3D space trajectory

training, we employ two separate Actor-Critic networks. The

primary actor-critic network focuses on generating control

inputs for the joints required to track a 2D trajectory,

while the secondary actor-critic network is responsible for

extending the manipulator tracking into 3D space.

Initially, we train the Actor-Critic network for the 2D

trajectory up to a certain level of proficiency. Subsequently,

both networks undergo joint training for 3D trajectory.

2506

Algorithm 1 Pseudo-code of our proposed algorithm

Hyperparameters: soft update factor ρ, reward discount factor γ, actor learning rate

ηa and critic learning rate ηc.

Input: empty replay buffer D1, D2, initialize parameters σ1, σ2 of critic net-

works Q1(s1, τ1|σ1), Q2(s2, τ2|σ2) and parameters φ1, φ2 of actor networks

π1(s1|φ1), π2(s|φ2). Initialize target network Q′

1, Q
′

2, and π′

1, π
′

2 with weights

σ′

1 ← σ1, σ
′

2 ← σ2 and φ′

1 ← φ1, φ
′

2 ← φ2, Initialize a random process N1 and

N2 for action exploration.

Procedure:

Step 1: 2D trajectory

1: Receive initial observation state s1
2: do

3: for t = 1 to T do

4: action1τ
t
1 = π1(s

t
1|φ

t
1) + Nt

1
5: Execute τt

1 , observe reward rt1, calculate absolute error and observe new

state s
t+1
1

6: Store transition (st1, τ
t
1 , r

t
1, p

t, s
t+1
1) in D1

7: Set Y i
1 = rt1 + γ(1− pt)Q′

1(s
t+1
1 , π′

1(s
t+1
1 |φ′

1)|σ
′

1)
8: Critic network loss function:

Lc
1 = 1

N

∑
i

(Y i
1 −Q(si1, τ

i
1|σ1))

2

9: Update critic network with learning rate ηc by minimizing the loss

with gradient descent:

∇σ1
Lc

1 = ∇
σ1 [1

N

∑
i

(Y i −Q(si1, τ
i
1|σ1))

2]

10: Update the actor policy with learning rate ηa using the sampled policy

gradient and minimizing actor loss functions with gradient descent:

∇φ1
La

1 = −∇φ1
J1

where, ∇φ1
J1 ≈

1

N

N∑

i=k

∇τQ(s, τ |σ1)|s=si1,τ=π1(si1)
∇φ1

π1(s|φ1)|s=si1

11: Update the target networks:

φ′

1 ← ρφ1 + (1− ρ)φ′

1

σ′

1 ← ρσ1 + (1− ρ)σ′

1
12: end for

13: calculate absolute mean square error

14: while absolute mean square error < 1 cm

The trained policies π1, value functions Q1, and their updated target networks π′

1
and Q′

1 from Algorithm 1 will be utilized as the initial configuration for step 2.

Step 2: 3D trajectory

1: Receive initial observation state s1, s2
2: do

3: for t = 1 to T do

4: action1τ
t
1 = π1(s

t
1|φ

t
1) + Nt

1

5: action2τ
t
2 = π1(s

t
2|φ

t
2) + Nt

2

6: Execute τt
1 , τ

t
2 , observe reward rt1, r

t
2, calculate absolute error and

observe new state s
t+1
1 , s

t+1
2

7: Store transition (st1, τ
t
1 , r

t
1, p

t, s
t+1
1) in D1

8: Store transition (st2, τ
t
2 , r

t
2, p

t, s
t+1
2) in D2

9: Set Y i
1 = rt1 + γ(1− pt)Q′

1(s
t+1
1 , π′

1(s
t+1
1 |φ′

1)|σ
′

1)
10: Set Y i

2 = rt2 + γ(1− pt)Q′

2(s
t+1
2 , π′

2(s
t+1
2 |φ′

2)|σ
′

2)
11: Critic network loss function:

Lc
1 = 1

N

∑
i

(Y i
1 −Q(si1, τ

i
1|σ1))

2

Lc
2 = 1

N

∑
i

(Y i
2 −Q(si2, τ

i
2|σ2))

2

12: Update critic network with learning rate ηc by minimizing the loss with

gradient descent:

∇σ1
Lc

1 = ∇
σ1 [1

N

∑
i

(Y i
1 −Q(si1, τ

i
1|σ1))

2]

∇σ2L
c
2 = ∇

σ2 [1
N

∑
i

(Y i
2 −Q(si2, τ

i
2|σ2))

2]

13: Update the actor policy with learning rate ηa using the sampled policy

gradient and minimizing actor loss functions with gradient descent:

∇φ1
La

1 = −∇φ1
J1

∇φ2
La

2 = −∇φ2
J2

where, ∇φmJm ≈

1

N

N∑

i=k

∇τQ(s, τ |σm)|
s=sim,τ=πm(sim)∇φmπm(s|φm)|

s=sim

and m = 1, 2
14: Update the target networks:

φ′

1 ← ρφ1 + (1− ρ)φ′

1

φ′

2 ← ρφ2 + (1− ρ)φ′

2

σ′

1 ← ρσ1 + (1− ρ)σ′

1

σ′

2 ← ρσ2 + (1− ρ)σ′

2
15: end for

16: calculate absolute mean square error

17: while absolute mean square error < 1 mm

This sequential training method results in substantial im-

provements in stability and accelerates the convergence of

the algorithm. For a more in-depth understanding of our

proposed training approach, please refer to Algorithm 1 in

the paper. In this algorithm, all parameters marked with “1”

pertain to the Actor-Critic network responsible for the 2D

trajectory, which is trained first. Subsequently, the parameters

marked with “2” correspond to the Actor-Critic network that

provides control input for the joints responsible for the 3D

trajectory. Eventually, both actor-critic networks are trained

simultaneously for the 3D trajectory, once the actor-critic

network 1 has achieved a certain level of proficiency in the

2D trajectory.

D. Design of reward function

The reward function serves as a motivational tool, guiding

the agent by using a system of rewards and penalties to

define correct and incorrect actions. Agents strive to optimize

their cumulative rewards. In the recommended approach, the

reward function at time step k computes a numerical score by

considering errors in angular position (eki), angular velocity

(ėki), and angular acceleration (ëki) where i = 1, 2. In this

proposed approach, the reward function at time step k is

formulated as follows:

Ei =− a||eki ||1 − b||ėki ||1 − c||ëki ||1

rk1 =max(E1,−20α) +max(−d||

∫

ek1 ||1,−20α) (7)

rk2 =− f ||ep||1 −max(−E2,−20β)

+max(−h||

∫

ek2 ||1,−20β) (8)

where a, b, c, d, f, h are finite positive constants and α, β are

the number of joints responsible for 2D and 3D trajectory

tracking respectively. Increasing the reward, decreases the

eki , ėki and ëki at each time step k.

III. SIMULATION

Fig. 2: Three link manipulator schematic diagram

On a simulated three-link robotic manipulator, we apply

the suggested model. The dynamics of the three-link

manipulator is explained in [12]. The angles of the three

links in the manipulator are θ = [θ1 θ2 θ3]
T , and

τ = [τ ′1 τ ′2 τ ′3]
T are the torques applied to the three

joints. In the suggested DRL model, state (s) refers to the

error between desired and actual joint angle and velocity.

We denote s1 = [(θd2 − θ2) (θd3 − θ3) (θ̇d2 − θ̇2) (θ̇d3 −
θ̇2)

∫

(θd2 − θ2)dt
∫

(θd3 − θ3)dt]
T as joint 2 and 3 are

responsible for 2D trajectory tracking in vertical plane and

s2 = [(θd1 − θ1) (θ̇d1 − θ̇1)
∫

(θd1 − θ1)dt]
T . Similarly,

τ1 = [τ ′2 τ ′3] and τ2 = [τ ′1]

2507

Table I shows the list of physical parameters and their cor-

responding values of the three-link manipulator considered

for this numerical simulation.

TABLE I: Physical parameter values of three-link Robotic

Manipulator

Symbol Parameter Value

l1 Length of the 1
st link 0.04 m

l2 Length of the 2
nd link 0.17 m

l3 Length of the 3
rd link 0.132 m

g Gravity acceleration 9.8 m/s2

m1 Mass of the 1
st link 0.1 kg

m2 Mass of the 2
nd link 0.17 kg

m3 Mass of the 3
rd link 0.1 kg

r1 radius of the 1
st link 0.039 m

r2 radius of the 2
nd link 0.02 m

r3 radius of the 3
rd link 0.02 m

TABLE II: Parameter values for both the Actor-Critic Net-

works

Symbol Parameter Value

γ Discount factor 0.6

ηc Learning rate of Critic-network 10
−4

ηa Learning rate of each Actor-
network

10
−6

Nc

h
Number of hidden layers in Critic-
Network

2

Na

h
Number of hidden layers in each
Actor-Network

2

Nc
u Number of units in each hidden

layer in Critic-Network
64

Na
u Number of units in each hidden

layer in Actor-Network
64

ρ Hyperparameter for updating tar-
get network

0.01

The Actor-critic networks within the simulation have no

prior knowledge of the dynamics and parameters of the three-

link manipulator. Table II provides details of the parameters

for the Actor-Critic model. Initial weights for both the Actor

and Critic networks are randomly generated. The manipulator

undergoes training in episodes, with constraints imposed

on angular position, angular velocity, and acceleration to

ensure they stay within the physical limits throughout the

simulation.

A. Analysis of 2D Trajectory Results

In Figure 3, we present the simulation outcomes for the

initial phase, which entails tracking a 2D trajectory. During

this initial phase, we train the first Actor-Critic network

until it achieves a position mean square error of less than

1 cm, a milestone reached after 158 episodes. Each episode

corresponds to the complete trajectory that the manipulator

needs to follow in the X-Z plane, comprising 1000 points.

The comparison between the desired and actual trajectories

after training is illustrated in Figure 3a. Furthermore, Figures

3b and 3c show the evolution of position mean square error

and episodic rewards over the course of the training episodes.

B. Analysis of 3D Trajectory Results

In Figure 4, we present the simulation results for the

second phase, which involves tracking a 3D trajectory. In

(a) Trajectory tracking in 2D plane

(b) Position mean square error vs no. of episode

(c) Episodic reward vs no. of episode

Fig. 3: Trajectory tracking in the vertical 2D plane

(a) Trajectory tracking in 3D plane

(b) Position mean square error vs no. of episode

Fig. 4: Trajectory tracking in the vertical 2D plan

2508

Fig. 5: position mean square error(mse) vs. no. of episodes

without sequential learning

(a) Circular trajectory (b) 3D curve trajectory

(c) 2D curve trajectory

Fig. 6: Different trajectory tracking testing

(a) Trajectory tracking after impulse disturbance

(b) Evaluation of position mse with trajectory points

Fig. 7: Trajectory tracking after impulse disturbance

(a) Trajectory tracking after constant disturbance

(b) Evaluation of position mse with trajectory points

Fig. 8: Trajectory tracking after constant disturbance

this phase, we concurrently train both Actor-Critic networks

until the position mean square error is reduced to less than

1 mm, a goal achieved after 458 episodes. Each episode

corresponds to the complete trajectory that the manipulator

needs to follow in 3D space, comprising 4000 points. Figure

4a illustrates the comparison between the desired and actual

trajectories after training. Additionally, Figures 4b depict

the progression of position mean square error throughout

the training episodes. Following training, we assessed the

performance of our Actor-Critic network controller in track-

ing various trajectories, both in 2D and 3D, as depicted in

Figure 6. The simulation results presented in Figure 5 depict

the evaluation of mse for position across varying numbers

of episodes during the training phase for both Actor-Critic

networks, without employing sequential training. Notably,

these results indicate that the mse for position does not

exhibit a reduction, even after 5000 episodes, suggesting that

the networks fail to converge.

C. Analysis of 3D Trajectory Tracking Under External Dis-

turbance

Figure 8 depicts the outcomes of a trajectory tracking

simulation when subjected to an abrupt external disturbance.

During the initial rotation of the manipulator, a torque of 1
Nm is exerted on the end-effector from the 500th to the 550th

point along the trajectory. The impact of this disturbance

is illustrated in Figure 7a, where the error shows an initial

increase but gradually diminishes during the subsequent

rotation. Figure 7b portrays the error assessment concerning

the number of points, revealing that the mean square error

falls below 1mm after the disturbance subsides.

Next, Figure 8a displays the results of a simulation

involving a continuous external force. In this scenario, a

2509

(a) Number of cycle 6 (b) Number of cycle 11 (c) Number of cycle 18

Fig. 9: Trajectory tracking in 3D space in various frequency

torque of 0.5Nm is consistently applied to the manipulator’s

end-effector throughout the trajectory tracking process. As

depicted in Figure 8a, the error exhibits an initial increase in

response to the constant disturbance but gradually decreases

over time. The error evaluation in Figure 8b, concerning

the number of points, indicates that the mean square error

decreases to approximately 1.1mm.

Fig. 10: Position mean square error(mse) vs. no. of cycle in

one rotation

D. Analysis of 3D Trajectory Tracking at Various Frequen-

cies

In Figure 9, we showcase simulation results illustrating the

performance of 3D trajectory tracking at different frequen-

cies. The Actor-Critic network controller undergoes training

by following a 3D trajectory spanning five complete cycles.

The visual representations in the figures demonstrate that

the manipulator, when controlled by our designed controller,

can successfully track as many as 16 cycles within a single

rotation. The graph in Figure 10 displays how the error varies

with different numbers of cycles per rotation.

IV. CONCLUSIONS

This paper delves into the challenge of managing robotic

manipulator systems across various environments character-

ized by unknown parameters. It presents an optimal con-

trol strategy achieved through the application of a neural

network. This network model comprises two distinct sub-

networks: an actor network, responsible for acquiring the

optimal control strategy by maximizing the performance

index, and a critic network, which approximates the perfor-

mance index. We employ a sequential training approach with

two Actor-Critic models to expedite the learning process.

The adaptability of the network model to the unfamiliar

physical properties and dynamics of robotic manipulators

in diverse environments stems from its learning capabilities.

The effectiveness of this approach is demonstrated through

simulations involving a three-link manipulator.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] R. Dong, J. Du, Y. Liu, A. A. Heidari, and H. Chen, “An enhanced
deep deterministic policy gradient algorithm for intelligent control of
robotic arms,” Frontiers in Neuroinformatics, vol. 17, p. 1096053,
2023.

[5] Y. Hu and B. Si, “A reinforcement learning neural network for robotic
manipulator control,” Neural computation, vol. 30, no. 7, pp. 1983–
2004, 2018.

[6] S. Zhang, C. Sun, Z. Feng, and G. Hu, “Trajectory-tracking control
of robotic systems via deep reinforcement learning,” in 2019 IEEE

International Conference on Cybernetics and Intelligent Systems (CIS)

and IEEE Conference on Robotics, Automation and Mechatronics

(RAM). IEEE, 2019, pp. 386–391.
[7] J. M. Martı́n-Sánchez, J. M. Lemos, and J. Rodellar, “Survey of in-

dustrial optimized adaptive control,” International Journal of Adaptive

Control and Signal Processing, vol. 26, no. 10, pp. 881–918, 2012.
[8] R.-E. Precup and H. Hellendoorn, “A survey on industrial applications

of fuzzy control,” Computers in industry, vol. 62, no. 3, pp. 213–226,
2011.

[9] M. W. Spong, “On the robust control of robot manipulators,” IEEE

Transactions on automatic control, vol. 37, no. 11, pp. 1782–1786,
1992.

[10] E. Bejar and A. Morán, “Predictive control of a robot manipulator with
deep reinforcement learning,” in 2021 7th International Conference on

Control, Automation and Robotics (ICCAR), 2021, pp. 127–130.
[11] A. Liu, B. Zhang, W. Chen, Y. Luo, S. Fang, O. Zhang, Z. Liu,

Z. Wang, and J. Liu, “Reinforcement learning based control for
uncertain robotic manipulator trajectory tracking,” in 2022 China

Automation Congress (CAC), 2022, pp. 2740–2745.
[12] H. Sadegh and H. Zarabadipour, “Modeling, simulation and position

control of 3dof articulated manipulator,” Indonesian Journal of Elec-

trical Engineering and Informatics, vol. 2, no. 3, pp. 132–140, 2014.

2510

