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Abstract— This paper presents a new signed protocol for
bearing-only formation control of homogeneous multi-agent
system consisting of single integrator agents. The agents com-
municate over an undirected interaction topology, and the
desired formation is specified by inter-neighbour bearings. A
bearing-only controller that moves the agent in a direction
normal to the desired bearings based on the location of the
agent with respect to desired bearing vector is presented. To
uniquely specify the centroid and scale of the formation, a
leader-follower configuration is analyzed, along with the leader-
less case. Stability and convergence of the multi-agent system
with the proposed controller are analyzed using Lyapunov
techniques. It is shown that, using the proposed distributed
bearing-only formation control, the formation converges to the
desired bearing-rigid formation. As the proposed controller
uses sign function rather than absolute magnitude, it requires
accurate inter-neighbour bearing measurements only near its
desired bearing direction. This eliminates the requirement for
accurate sensors during controller implementation. Simulation
results validate the effectiveness of the proposed controller for
formation control with and without leader agents.

Index Terms— Multi-agent systems, Bearing-rigid formation,
Bearing-only control, Sign-based control.

I. INTRODUCTION

Multi-agent system consists of multiple interacting agents
with identical or non-identical dynamics. These agents can
be ground vehicles, robots, aerial vehicles, or even subsys-
tems of a larger system. With advancements in distributed
control, multi-agent systems find applications in a variety of
fields like agriculture [1], surveillance, defense [2], crowd
monitoring, search and rescue missions [3], etc.

Formation control is a class of cooperative control of
multi-agent systems in which the agents attempt to align
themselves to form a desired formation shape [4]. This
formation shape can be specified using absolute positions,
inter-neighbour distances, or inter-neighbour bearings [5].
Formation control using absolute positions allows for all
possible manoeuvres of agents, but, requires precise position
sensors for control. Distance-based formation control relaxes
this need for absolute position measurements, by relying on
relative distance measurements. As scaling of the formation
alters the inter-neighbour distance, distance-based formations
can perform only translation and rotation manoeuvres [6]. In
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contrast, when the desired formation is specified using inter-
neighbour bearing vectors, the formation can perform both
translation, scaling and unified rotation, as these manoeuvres
do not alter the inter-neighbour bearing vectors.

In this work, we introduce a distributed bearing-only
control law for a multi-agent system to achieve a formation
specified using inter-neighbor bearings. To uniquely specify a
formation using bearing vectors, bearing rigidity theory was
introduced in [7], analogous to the notion of distance rigidity
in distance-based controls. The concepts of bearing rigidity
and infinitesimal bearing rigid formations are detailed in
[8]. Formation control based on bearings can be achieved
using bearing-only or bearing-based control laws. The for-
mer directly utilize inter-neighbour bearing vectors and are
therefore nonlinear, while the latter uses the projection of
relative displacements and is therefore linear in nature [8].

Considering leader-follower configuration, a bearing-based
control law for translation and formation scaling of single
integrator agents is presented in [9] for an undirected interac-
tion topology. Bearing-based control laws are also discussed
for multi-agent systems consisting of single integrator, dou-
ble integrator, and unicycle agents communicating over a
directed interaction graph in [10] and [11]. The work in
[12] presents a bearing-based formation tracking approach
when the interaction among the agents is both directed and
time-varying. Since these bearing-based control laws use the
projection of relative displacement vector, the agents need
to be equipped with precise distance sensors like sonar or
radar, which can be bulky and have limited fields of view.
In contrast, bearing-only control laws rely solely on relative
bearing vectors and hence they can be implemented using
low-cost onboard cameras, which are both lighter and offer
a wider field of view.

Considering nonlinear agent dynamics, the work in [13]
introduced bearing-only control for a group of UAVs with
bilateral high-level control for the leaders. In [14], a bearing-
only consensus and formation control law for single inte-
grator agents is presented, using gradient flow techniques.
In [15], bearing-only control for a multi-agent system con-
sisting of single integrator agents is discussed, and this is
extended to double integrator agents and unicycles in [16].
Furthermore, in [17], a unified bearing-only control law for
a heterogeneous multi-agent system, including single inte-
grator, double integrator, and unicycle agents, is presented.
However, all these control laws require accurate measure-
ments of inter-neighbour bearings throughout.In contrast to
existing bearing-only controllers, the controller presented in
this work uses a sign function to select the desired direction

2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Copyright ©2024 EUCA 2480



of agents’ motion. Since a sign function is used instead
of absolute bearing magnitude, the controller only requires
accurate measurement of the bearing vectors in the vicinity
of the desired bearing vector. This eliminates the need for
too accurate sensors.

In this work, we address the bearing-only formation con-
trol problem of a homogeneous multi-agent system compris-
ing n agents with single integrator dynamics, communicating
over an undirected graph. A novel bearing-only formation
control law based on a signed protocol is proposed, which is
applicable to both leader-less and leader-follower scenarios.
We analyze the convergence of the multi-agent system to
achieve the desired formation shape in both the cases. In
the case of leader-follower configuration, by specifying the
location of leaders, convergence of the formation up to a
unique centroid and formation scale.

The main contributions of this paper are twofold:
1) A novel bearing-only formation controller for a sin-

gle integrator multi-agent system is presented, which
only requires absolute bearing measurements near the
desired bearing vector.

2) The convergence of the formation in a leader-follower
configuration using the proposed bearing-only control
for followers is validated, when the desired formation
is specified in terms of position and scale, using a
minimal number of leader agents.

The rest of the paper is organized as follows. Section II
provides preliminaries on graph theory and bearing-rigidity
concepts, along with the problem definition. Section III
presents the proposed bearing-only controller for formation
control in both leader-less and leader-follower cases, along
with convergence analysis. The results are validated through
simulations in Section IV, followed by conclusions and
future directions in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a homogeneous multi-agent system consisting of
n-single integrator agents a1, a2, . . . , an. Dynamics of agent
ai is given by,

ṗi = vi, i ∈ {1, 2, . . . n}. (1)

Here pi, vi ∈ Rd represent position and velocity of
the agent ai. Let p =

[
pT1 pT2 · · · pTn

]T ∈ Rnd and
v =

[
vT1 vT2 · · · vTn

]T ∈ Rnd respectively denote the
position and velocity configuration of the multi-agent system.

A. Graph Theory Preliminaries

The multi-agent system in (1) communicate over an undi-
rected graph G = (V, E), where, agents a1, a2, . . . , an forms
the vertex set V and each communicating pair of agents forms
the edge set E .

An edge (ai, aj) ∈ E indicates that ai can measure
relative bearing of aj with respect to ai. For an undirected
graph G, (ai, aj) ∈ E =⇒ (aj , ai) ∈ E . The set of
neighbours of agent ai is denoted by Ni and is defined as,
Ni = {aj : (ai, aj) ∈ E}. An oriented graph is a graph

obtained by assigning directions to the edges of a given
graph. For an oriented graph with m edges, the incidence
matrix H ∈ Rm×n is defined as,

[H]kj =


1 if aj is terminal node of kthedge
−1 if aj is starting node of kthedge
0 if aj /∈ kthedge

. (2)

A formation G(p) is obtained by assigning position con-
figuration p to the agents in V , communicating over G. Let
(ai, aj) ∈ E be the kth edge of the graph G. The edge vector
for this communicating pair of agents is defined as,

ek = ei,j = pj − pi. (3)

Using incidence matrix H , we have,

e = Hp (4)

where e =
[
eT1 eT2 · · · eTm

]T
and H = H ⊗ Id. For an

edge ek := (ai, aj) ∈ E , the bearing vector gij is defined as,

gk = gi,j =

{
ei,j
‖ei,j‖ if ‖ei,j‖ 6= 0

0d otherwise
(5)

where, 0d ∈ Rd denotes the vector of all zeros. As ei,j =
−ej,i, we have the bearing vectors satisfying gi,j = −gj,i.
Further, as can be inferred from (5), the bearing vector gi,j
is a unit vector pointing from ai to aj .

Orthogonal projection matrix for a vector gi,j is defined
as,

Pij = Id − gi,jgTi,j . (6)

It is used to obtain the projection of any vector onto the
orthogonal component of the vector gi,j , as shown in Fig. 1.
Here P ∗ij is the orthogonal projection matrix corresponding
to desired bearing g∗i,j .

g∗i,j

P
∗
ij

(pj
− pi)

(p
j
−
p i

)

ai

aj

Fig. 1: Effect of orthogonal projection matrix

B. Bearing-rigid Formations

The uniqueness conditions for a formation specified using
inter-neighbour bearing vectors are given by bearing rigidity
theory and are stated as follows.

Definition 1. [8] A formation G(p∗), with desired position
configuration of agents p∗ and interaction topology G, is
said to be infinitesimally bearing rigid if any allowable
infinitesimal motion (motion that preserves inter-neighbour
bearings) of the formation corresponds only to translation
and scaling of the formation, and does not change the shape
of the formation.
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Let L∗g ∈ Rnd×nd represents the bearing Laplacian matrix
with desired bearings, defined as,

[L∗g]ij =


∑

j∈Ni
P ∗ij if i = j

−P ∗ij if i 6= j, aj ∈ Ni

0d otherwise
. (7)

Using this bearing Laplacian matrix, the rank condition for
infinitesimal bearing rigidity is given by [18],

rank(L∗g) = dn− d− 1.

When the agents in the multi-agent system achieve the
desired bearing-rigid formation G(p∗), we have P ∗ij(pj −
pi) = 0d ∀(ai, aj) ∈ E and hence,

∑
j∈Ni

P ∗ij(pj−pi) = 0d,
which in matrix form is given by,

L∗gp = 0dn. (8)

C. Leader-Follower configuration

Consider a multi-agent system of n-agents in leader-
follower configuration. Let the first nl agents be leaders, and
the remaining nf agents be followers, such that n = nl+nf .
The set of leaders and followers are respectively denoted
by L = {a1, a2, . . . , anl

} and F = {anl+1, anl+2, . . . , an}.
With this, the position configuration of the agents p and
the bearing Laplacian matrix L∗g for the formation can be
subdivided as,

p =

[
pl

pf

]
and L∗g =

[
Lll Llf

Lfl Lff

]
.

where, pl ∈ Rdnl , pf ∈ Rdnf , Lll ∈ Rdnl×dnl , Llf = LT
fl ∈

Rdnl×dnf and Lff ∈ Rdnf×dnf . When the leader agents
maintain the desired leader-to-leader bearing, the bearing
rigidity conditions for the multi-agent system simplifies to
rank(Lff ) = dnf [9]. Thus, when leader configuration
satisfies pl = p∗l , using (8), the corresponding unique
configuration of the followers is given by,

p∗f = −L−1ff Lflp
∗
l . (9)

D. Problem Formulation

Consider a homogeneous multi-agent system of n-agents
with dynamics (1), communicating over an undirected graph
G. The formation shape is specified using inter neighbour
bearings g∗i,j ,∀(ai, aj) ∈ E .

Assumption 1. The desired formation G(p∗) is infinitesi-
mally bearing rigid.

First, we present our sign-based distributed bearing-only
controller for formation stabilization in leader-less case.

Problem 1. (Bearing-only formation stabilization) For the
multi-agent system in (1) communicating over G, obtain dis-
tributed bearing-only control law for agents that depends on
direction of current bearing with respect to desired bearing,
to achieve the unique desired formation G(p∗) specified in
terms of inter-neighbour bearings g∗i,j , i.e.,

lim
t→∞

gi,j(t) = g∗i,j ∀ (ai, aj) ∈ E .

Further, to specify the centroid and scale of the forma-
tion, we consider a leader-follower configuration, where we
consider a minimal set of leader agents.

Problem 2. (Bearing-only formation stabilization in leader-
follower configuration) For the multi-agent system in (1)
communicating over G, when leader agents satisfy pl = p∗l ,
obtain distributed bearing-only control law for followers that
requires only the direction of current bearing with respect to
desired bearing, to achieve the unique configuration p∗f in
(9) specified by inter-neighbour bearings g∗i,j .

To solve the formation stabilization problems, we make
the following standard assumptions:

Assumption 2. No agents collide with each other during
the evolution of the formation, and the configuration of
the agents does not satisfy gij = −g∗ij , as it leads to flip
ambiguity.

III. BEARING-ONLY FORMATION CONTROL

In this section, we introduce a bearing-only control law
for agents to stabilize the formation in both leader-less and
leader-follower configurations. Unlike existing control laws
that require precise calculations of the bearing vector, our
approach presents a novel bearing-only controller using a
sign function, which only requires precise calculation of the
bearing vector in the vicinity of the desired bearing vector
g∗i,j .

A. Bearing-only Formation Stabilization in Leader-less Con-
figuration

Consider a bearing rigid formation G(p∗), of n-single
integrator agents communicating over an undirected graph
G. The formation is specified using desired inter neighbour
bearings g∗ij , ∀(ai, aj) ∈ E . We propose a novel bearing-
only control law for agent ai given by,

vi =
∑
j∈Ni

sgn(g⊥Ti,j∗ gi,j)g
⊥
i,j∗ . (10)

Here, sgn(.) represents the sign function defined as,

sgn(x) =


1 if x > 0

−1 if x < 0

0 if x = 0

. (11)

According to this control law, agent ai consider the
location of aj with respect to the desired bearing vector g∗i,j
and takes the corresponding control strategy which would
be either g⊥i,j∗ or −g⊥i,j∗ . The graphical representation of
the control action of ai, based on its position with respect
to aj is shown in Fig. 2. Here, the blue circle denoted by
a∗i represents the desired configuration of agent ai, which
maintains the desired bearing g∗i,j with respect to agent aj .
The desired bearing vector g∗i,j and its normal components
g⊥i,j∗ and −g⊥i,j∗ are also marked in blue colour.

As can be inferred from Fig. 2 and control law (10), an
agent ai moves normal to the desired bearing vector, in order
to minimize the component of the actual bearing vector in
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gij

gij∗

vi

g⊥ij∗

−g⊥ij∗

gij∗

gij
g∗ij

vi

a∗i

aj

ai
ai

Fig. 2: Graphical interpretation of the proposed bearing-only
control law

the direction normal to desired bearing vector. For instance,
when ai takes the position shown by the gray circle, the
corresponding control action is shown by the gray control
vector vi, which is the same as −g⊥i,j∗ , the normal vector to
g∗i,j that lies in the same side as gi,j . Similarly, when ai takes
the position shown by the black circle, the corresponding
control action vi (black color) is the same as g∗i,j

⊥, which
is the normal vector to g∗i,j that lies in the same side as that
of gi,j .

As the strategy of the agent remains constant as long as
the agent is on the same side as the desired bearing, precise
measurement of the actual bearing vector is required only
when the current bearing approaches the desired bearing.
This eliminates the requirement for precise sensors. Fur-
thermore, when the current bearing aligns with the desired
bearing, the velocity input to the agent becomes zero, which
further prevents any deviation from the actual bearing.

Theorem 1. For the multi-agent system of n-agents with
dynamics (1), communicating over an undirected graph G,
using bearing-only control law for the agents given by
(10), the multi-agent system asymptotically converges to
the desired formation G(p∗) specified using inter-neighbour
bearings g∗ij∀(ai, aj) ∈ E .

Proof. Let p∗ represent the desired configuration of the
agents satisfying the desired bearing vectors g∗i,j ∀(ai, aj) ∈
E . Considering position error for ai given by δpi = pi − p∗i ,
we have the formation error δp defined as,

δp = p− p∗ (12)

where, p∗ =
[
p∗1, p∗2, . . . , p∗n

]T
. Using incidence ma-

trix H and the control function (10), the velocity configura-
tion v =

[
vT1 vT2 · · · vTn

]T
is given by,

ṗ = v = −HTMg∗⊥. (13)

Here, M = diag(sgn(g∗⊥Tk gk)) ∈ Rmd×md and g∗⊥ =[
g∗⊥1 g∗⊥2 · · · g∗⊥m

]T ∈ Rmd, where gk and g∗⊥k respec-
tively denote the actual bearing vector of kth edge and the
unit vector normal to the desired bearing vector of kth edge.

Here, we consider a Lyapunov function as in [19] and
[20] for the sign based controller. Using Lyapunov candidate
function V = 1

2‖δp‖
2, we have,

V̇ = δTp δ̇p.

With δp as in (12) and considering formation stabilization
problem (ṗ∗ = 0), the time derivative of V turns out to be,

V̇ = δTp v.

Substituting for the velocity configuration v from (13), we
obtain,

V̇ = −δTp HTMg∗⊥

= −(p− p∗)THTMg∗⊥

= −eTMg∗⊥ + e∗TMg∗⊥.

(14)

The last equality follows from (4).
Since e∗k and g∗⊥k are normal to each other, the second

term in (14) turns out to be,

e∗TMg∗⊥ =

m∑
k=1

sgn(g∗⊥Tk gk)e∗Tk g∗⊥k = 0.

Now, consider the first term in (14). It follows that,

eTMg∗⊥ =

m∑
k=1

sgn(g∗⊥Tk gk)eTk g
∗⊥
k

=

m∑
k=1

sgn(g∗⊥Tk gk)︸ ︷︷ ︸
I

(gTk g
∗⊥
k )︸ ︷︷ ︸

II

‖ek‖ ≥ 0,

(15)

since terms I and II are of same sign and ‖ek‖ > 0.
Substituting these terms in (14), we have,

V̇ = −eTMg∗⊥ ≤ 0

Here, V̇ = 0 if gij = g∗ij and V̇ < 0 otherwise. Thus,
using control law (10) for the agents, the multi-agent system
asymptotically converges to the desired formation G(p∗).
This completes the proof of Theorem 1.

Further, for the leader-less formation stabilization, we
show the invariance of centroid and formation scale.

Consider the centroid of the formation, p̄ ∈ Rd defined as,

p̄ =
1

n

n∑
i=1

pi =
1

n
(1n ⊗ Id)Tp. (16)

With this, the formation scale α ∈ R is given by,

α =

n∑
i=1

‖pi − p̄‖2 = ‖p− 1n ⊗ p̄‖2. (17)

Using the proposed bearing-only control law (10) for agents,
the behaviour of the centroid and formation scale is given
by the following lemma.

Lemma 1. With the proposed bearing-only control (10) for
agents, under Assumption 1 and 2, the formation centroid p̄ is
invariant and the formation scale decreases as long as gij 6=
g∗ij∀(ai, aj) ∈ E . Furthermore, the position of the agents and
the edge vectors of the formation are upper bounded by a
positive scalar.

Proof. Using (16), we have ˙̄p = 1
n (1n ⊗ Id)T ṗ = 0, since

(1n ⊗ Id)HT = 0. This implies that the centroid of the
formation is invariant under the proposed control action.
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Further, using (17), the rate of change of formation scale
is given by,

α̇ = 2(p− 1n ⊗ p̄)T ṗ = −2(p− 1n ⊗ p̄)HTMg∗⊥.

Substituting p̄ from (16) and using the fact that (1n ⊗
Id)THT = 0, we have,

α̇ = −2pTHTMg∗⊥ = −2eTMg∗⊥ ≤ 0.

The last inequality follows from (15). Therefore, α̇ = 0
if g = g∗ and α̇ < 0 otherwise, which implies that
the formation scale decreases until the desired formation is
achieved.

As α̇ ≤ 0, we have, α(0) ≥ α(t). Therefore, it turns out
that, √

α(0) ≥ ‖p− 1n ⊗ p̄‖ ≥ ‖p‖ − ‖1n ⊗ p̄‖.

Thus, ‖p‖ ≤
√
α(0) + ‖1n ⊗ p̄‖, ∀t and hence, ‖e‖ ≤

‖H‖‖p‖ ≤ ‖H‖(
√
α(0) + ‖1n ⊗ p̄‖). Therefore, using

control law (10) for the agents, both the position and edge
vector of the formation are upper bounded by a positive
scalar.

B. Bearing-only formation control in leader-follower config-
uration

Consider the homogeneous multi-agent system of n-agents
with dynamics (1) in leader-follower configuration, commu-
nicating over an undirected graph G. Here, the leaders are
controlled externally to define the centroid and scale of the
formation. A minimum of two leaders are required to specify
both centroid and formation scale. The leader configuration
satisfies pl = p∗l , which maintains the desired bearing
between the leaders. By specifying the leader configuration
p∗l , the position and scale of the formation gets predefined.

In the following, we present a bearing-only control law
for followers to drive the multi-agent system to the desired
formation G(p∗), specified using inter-neighbour bearings
g∗ij ∀(ai, aj) ∈ E .

Corollary 1. Consider the n-agent multi-agent system with
nl leaders and nf = n− nl followers. When leaders satisfy
the desired configuration pl = p∗l , using control law (10)
for followers, the multi-agent system asymptotically stabilizes
to the desired formation G(p∗) specified by inter-neighbour
bearings.

Proof. Consider the position error in formation δp, given by
(12). As leader configuration satisfies pl = p∗l , the position
error δp takes the form δp =

[
δTpl

δTpf

]T
=
[
0Tnld

δTpf

]T
.

With the control law (10) for followers, the velocity config-
uration of the multi-agent system is given by,

v = −
[
0 0
0 Infd

]
HTMg∗⊥. (18)

Consider the Lyapunov candidate function as V = 1
2‖δp‖

2.
Using (18), the derivative of the Lyapunov function turns out
to be,

V̇ = δTp ṗ = −δTp
[
0 0
0 Infd

]
HTMg∗⊥. (19)

As δTp

[
0 0
0 Infd

]
=
[
0Tnld

δTpf

]
= δTp , we have,

V̇ = −δTp HTMg∗⊥ < 0.

The last inequality follows from the proof of Theorem 1.
Thus, using control law (10) for followers, when the leader
configuration satisfies pl = p∗l , the multi-agent system
asymptotically stabilizes to the desired formation specified
using inter neighbour bearing vectors and leaders’ configu-
ration pl. Here, the position and scale of the formation can
be pre-specified based on p∗l . This completes the proof of
Corollary 1.

Remark 1. In the leader-follower configuration, the lead-
ers’ configuration pl satisfies the desired leader-to-leader
bearings. Further, as leader agents do not take control
actions based on follower configuration, the communication
graph can be assumed to be mixed, with leader-to-follower
interaction as a directed edge while the interaction within
followers as undirected.

IV. SIMULATION RESULTS

The results of the proposed bearing-only formation control
are validated through simulations, considering a multi-agent
system of four agents. The initial position configuration of
the agents is selected as,

p1(0) =
[
2 5

]T
, p2(0) =

[
2 0

]T
,

p3(0) =
[
3 −5

]T
, and p4(0) =

[
−4 2

]T
.

The communication among the agents is selected as shown
in Fig. 3a. The objective of the multi-agent system is to form
a square formation, as shown in Fig. 3b, using the proposed
bearing-only control law for the agents.

2

1

4

3

(a) Communication topology

2

1

4

3

(b) Formation configuration

Fig. 3: Communication topology and desired configuration
of agents in the multi-agent system

In leader-less formation control case, using control law
(10) for the agents, the agents in the multi-agent system
approach each other, as predicted by Lemma 1, until the
desired formation shape is achieved. The agents move from
their initial configuration to the desired configuration and
remain in that configuration, as can be inferred from the
position and bearing error plots in Fig. 4a.

Further, by considering a1 and a2 as leaders, we aim
for formation stabilization at a particular point and to a
predefined formation scale defined by leaders’ configuration.
The position plot and the corresponding bearing error plot
for the agents are shown in Fig. 4b.
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(a) Leaderless configuration
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(b) Leader-follower configuration

Fig. 4: Position and Bearing error plot of agents with control law (10)

As can be inferred from the figures, the bearing error
converges to zero. Consequently, the follower agents move
from their initial configuration to the desired configura-
tion, specified by both the leader configuration and inter-
neighbour bearings, and they remain in that configuration.

V. CONCLUSIONS

This paper presents a bearing-only control law for for-
mation control of a homogeneous multi-agent system con-
sisting of single integrator agents. The proposed bearing-
only controller is based on a sign function protocol that
moves the agent normal to the desired bearing based on
the direction of current bearing vector with respect to the
desired bearing vector. In comparison to existing bearing-
only control laws, the proposed control law is easy to
implement, as the control action takes values that switch
within a finite set of inputs. The convergence of the multi-
agent system with the proposed control laws is analyzed
mathematically and verified through simulation, for forma-
tion stabilization scenarios. The proposed approach can be
extended to account for time-varying and directed interaction
typologies, incorporating more complex agent dynamics, and
addressing robustness against disturbances. Further, works
are in progress to analyze finite time convergence with the
specified controller.
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