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Abstract— This work proposes a closed-loop stability analysis
of unstable open-loop systems represented by first-order and
second-order plus time-delay (FOPTD and SOPTD) models.
This analysis considers a proportional (P) controller and a
predictor-based controller for FOPTD models, while a P and a
phase-lead controller are considered for SOPTD models. In all
cases, the achievable robustness has been computed considering
time-varying delays. Several simulations were performed, and
based on the integrated absolute error, it is shown that using
a predictor is a better solution for large time-delay systems.
Otherwise, the results are equivalent. In addition, the effect
of the left half-plane pole of the SOPTD system is analysed.
Finally, a comparison is made with recently published results
that employ more complex and iterative algorithms.

Index Terms— time-varying delay, robust control, predictor-
based control, unstable models, small-gain theorem.

I. INTRODUCTION

Time-delay models belong to a class of functional differ-
ential equations that are of infinite dimension, in contrast to
ordinary differential equations (ODEs). Time delays appear
in several processes from many fields of study, such as
chemistry [1], engineering [2], [3], and, particularly, com-
munication and information technology [4], where networked
systems are predominant [5]. Large time delays can deterio-
rate the closed-loop performance or even lead the system to
instability [6].

In the literature, there are mainly two approaches to anal-
yse the closed-loop stability of LTI systems: the frequency-
domain and the time-domain analyses [7]. In the frequency-
domain analysis, classical methods, including root locus
(limited to rational transfer functions), and the Nyquist crite-
rion, can be mentioned. However, in practical applications, it
is common to use the small-gain theorem, also based on the
frequency domain, to impose a certain degree of robustness.
Moreover, it can be extended to time-varying delay systems
[8]–[11].

In the case of the time-domain analysis, the Lyapunov-
Krasovskii functional can be employed, and it can be ex-
pressed in the form of linear matrix inequalities (LMIs)
[12]. Focusing on industrial applications, many works de-
rived stability analysis and control tuning rules considering

1Department of Electrical Engineering, Federal University of Ceara,
Fortaleza-CE, Brazil. e-mails: juanmoreira@alu.ufc.br
(Juan P. R. Moreira), jluizcp@alu.ufc.br (João L.
de C. Pereira), reneolimpio@alu.ufc.br (René D.
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first-order and second-order plus time-delay (FOPTD and
SOPTD) models [13]–[15].

In the case of processes with large time delays, the use
of predictors can improve the closed-loop performance [9],
[16]. A wide discussion of when to use predictors can be
found in [17], [18].

During the last decade, many publications have emerged to
deal with time-varying delay, such as [19], [20]. Additionally,
the recent work in [21] proposed delay-dependent condi-
tions combining dissipativity theory, Lyapunov–Krasovskii
functionals, and an iterative algorithm. A numerical example
using a SOPTD process model, found an output feedback
gain, after 178 iterations, by solving a LMI problem. To
derive a more straightforward solution, this work proposes
a set of stability analyses for closed-loop systems with
unstable FOPTD and SOPTD process models with time-
varying delay. Its three main contributions are: (i) based
on the small-gain theorem, an analytical stability condition
is derived for systems with unstable FOPTD models and
a constant feedback gain, where the upper bound of the
stabilisable time-varying delay is computed; (ii) to enlarge
the upper bound of the stabilisable time-varying delay, the
use of a predictor is proposed and a practical rule, based on
performance analysis, used to decide if the predictor is the
better choice, is also proposed; and (iii) it is also derived
an analytical stability condition for systems with unstable
SOPTD models and constant output feedback, where, to find
a feasible solution, it is considered that only one pole is
in the right half plane, being also shown that a phase-lead
compensator can enlarge the upper bound of the stabilisable
time-varying delay for such systems.

This work is organised as follows: Section II presents the
concept of achievable robustness, based on the small-gain
theorem, for closed-loop systems with time-varying delay.
Section III discusses closed-loop stability using unstable
FOPTD models. Section IV presents how to improve the
achievable robustness using a predictor. Section V shows a
performance analysis and a practical rule to decide when to
use a predictor. Section VI discusses stability for systems
with SOPTD models with a zero. Section VII presents the
results of the conducted simulations, and finally, Section VIII
presents a discussion and the conclusions of the work.

II. ROBUSTNESS OF CLOSED-LOOP SYSTEMS WITH
TIME-VARYING DELAY

In this section, an analysis based on the small-gain theo-
rem presented in [10] is conducted on a closed-loop system
represented in Fig. 1, where P is the time-varying delay
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NOMENCLATURE

Lmax upper bound of the stabilisable constant time delay
for a given controller, such that hmax < Lmax

ĥ time-delay uncertainty for the predictor whose sta-

bility is guaranteed
h(t) time-varying delay in the range [0,hmax)
hp nominal time delay of a predictor control structure
hmax upper bound of the stabilisable time-varying delay

process, Ceq is the equivalent controller, r is the set-point, u
is the control input, and y is the process output. The purpose
of this analysis is to find the upper bound of the time-varying
delay whose the closed-loop system is stable.

Ceq P •
r u y

+
−

Fig. 1. Closed-loop system.

The most common robustness measures used in industrial
practices are the phase margin φm and the gain margin gm.
They provide robustness against phase and gain increases of
up to φm and gm in the process, although not simultaneously.
Note that φm is defined at the lowest frequency where the
open-loop amplitude is 1, and gm at the lowest frequency
where the open-loop phase is -180 degrees.

Delay margin is the traditional way to define the smallest
additional delay in the open-loop at the frequency of φm that
results in an unstable closed-loop system. In other words,
if the phase margin is φm at the frequency ωφ , then the
delay margin is ∆Lmax = min

i

φ i
m

ω i
φ

> 0 [7]. Note that the delay

margin is not defined for negative delay errors since time
delay cannot assume values less than zero.

However, delay margin is only valid for constant time-
delay analysis. Therefore, considering time-varying delay
systems, the strategy used in this work rely on the concept of
robustness index from [8] and [22] and the following theorem
from [10]:

Theorem 1: For the closed-loop system from Fig. 1, with
continuous-time P(s) and Ceq(s), the system is stable for
any time-varying delays defined by ∆(u) = u(t −h(t)), with
0 ≤ h(t) < hmax, where h(t) is the time-varying delay, and
hmax is the upper bound of the stabilisable time-varying delay,
if the following condition is satisfied

∣∣∣∣ Ceq( jω)P( jω)

1+Ceq( jω)P( jω)

∣∣∣∣< 1
hmaxω

, ∀ω ∈ [0, ∞). (1)

III. CLOSED-LOOP STABILITY ANALYSIS USING FOPTD
MODELS

Consider an open-loop unstable FOPTD process given by
ẋ(t) = ax(t)+u(t −h(t))
y(t) = x(t)
u(t) = 0, t ∈ [−h0,0)
x(0) = x0 = 0

, (2)

where a > 0, t is the continuous time, x(t) is the state, y(t)
is the output, u(t) = 0 is the control signal, x0 is the value
of the initial condition x(0), h0 is the value of h(−h0), and
h(t) is a time-varying delay, such that:

0 ≤ h(t)< hmax. (3)

To stabilise the system (2), a proportional controller can
be used

u(t) =−k y(t). (4)

Then, the closed-loop system is given by

ẋ(t) = ax(t)− k x(t −h(t)), (5)

where x(0)= 0. Note that, for the case of h(t)= 0, the system

(2) can be expressed by the figure 1 with P(s) =
1

s−a
and

Ceq(s) = k, such that, the following theorem can be stated:
Theorem 2: For the closed-loop system from Fig. 1, with

continuous-time P(s) =
1

s−a
, the system can be stabilised

for Ceq(s) = k and time-varying delay defined by ∆(u) =
u(t − h(t)), with 0 ≤ h(t) < hmax, where h(t) is the time-
varying delay, and hmax is the upper bound of the stabilisable
time-varying delay, if the following condition is satisfied:

hmax <
1
a
. (6)

Proof: From the considerations in theorem (2) and the
condition stated in theorem (1), it results∣∣∣∣ khmaxω

jω −a+ k

∣∣∣∣< 1, ∀ω ∈ [0, ∞). (7)

Applying complex norm properties to (7), supposing ∃ M ∈
R, such that M is the lower bound of the condition from (1),
and 0 ≤ M < ∞, it follows that:

(khmaxω)2

ω2 +(k−a)2 ≤ M2 ∀ω ∈ [0, ∞). (8)

Rearranging (8), one obtains:

ω
2[M2 − (khmax)

2]+ (k−a)2 ≥ 0. ∀ω ∈ [0, ∞). (9)
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The inequality (9) is a sum of squares, meaning that it can
only be equal to zero if M2 − (khmax)

2 and (k−a)2 are also
equal to zero. Thus, it results

M = hmaxa. (10)

Therefore, with (10), (9), and (7), the proof is concluded.
Corollary 2.1: The stability analysis performed on theo-

rem (2) can be reduced to high frequencies only to determine
the upper bound of the stabilisable time-varying delay

Proof: Borrowing the conditions found in the proof of
theorem (2), as k = a, the high frequency effect is analysed
by taking the limit:

lim
ω→∞

∣∣∣∣ khmaxω

jω −a+ k

∣∣∣∣= hmaxa = M. (11)

IV. IMPROVING THE ACHIEVABLE ROBUSTNESS

In this section, it is proposed to use a predictor-based con-
trol strategy to improve the maximum achievable robustness
Lmax.

u(t) =−k
(∫ hp

0
eaθ u(t −θ)dθ + ehpay(t)

)
(12)

where hp is the predictor constant time delay, which can be
used as tuning parameter.

The following theorem is a direct result of Theorem 1 and
the robustness index of [23]

Theorem 3: The system in (2), feedbacked using the con-
troller from (12), is stable for any time-varying delay, defined
by hmax = hp + ĥ, if the following condition is satisfied∣∣∣∣ kehpa

jω −a+ k

∣∣∣∣< 1
ĥω

, ∀ω ∈ [0, ∞). (13)

where ĥ is the predictor time-delay uncertainty defined as
ĥ = hmax−hp. Note that in order to guarantee stability in the
range [0,hmax), then ĥ > hp.

As in corollary (2.1), the robust stability condition is closer
to being violated at high frequencies, thus

kehpa <
1
ĥ
. (14)

When applying the Routh-Hurwitz criterion to the delay-
free system and from (14), the following condition is ob-
tained

a < k <
1

ehpaĥ
. (15)

In this case, to obtain a feasible controller, then

a <
1

ehpaĥ
, (16)

leading to

ĥ <
1

aehpa . (17)

To guarantee stability with delays h(t) starting from zero,
then

ĥ > hp. (18)

By using (17) and (18), it results

ĥ <
1

aeĥa
. (19)

In this case, the maximum achievable robustness is given
by Lmax = max{2ĥ},

s.t. : ĥ <
1

aeĥa
.

(20)

By using numerical methods, the solution of (20) is Lmax =
1.134

a
. Note that the stabilisable time delay using a predictor

is in the range [0,1.134], being a range 13.5% larger than
that one for the proportional controller.

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section, comparative results were established by
computing the integrated absolute error (IAE) multiple times
across a range of Lmax values, varying from 0.05 to 0.95,
while considering the initial condition x(0) = 1. Then, the
following ratio was calculated:

Ip =
IAEproportional

IAEpredictor
. (21)

In this work, Ip is defined as a performance index. When
the value of Ip is near one, both controllers exhibit similar
performance. Conversely, when Ip is bigger than one, the
predictor-based controller shows superior performance.

Figure 2 shows the Ip index for both cases L = 0 and
L = 0.9Lmax. Both controllers were computed for the same
Lmax for fair comparison in each iteration. Note that with
Lmax close to zero, both controllers have similar IAE index
for L = 0 while for L = 0.9Lmax, the IAE of the predictor-
based controller is up to 10 % better.

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

1.5

1.6

Fig. 2. Performance index for different values of Lmax
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A. Time responses comparison using FOPTD models

This section presents a comparative simulation between
a proportional controller and a predictor-based proportional
controller. Without loss of generality, it was chosen, plant
pole a = 1. In this case, according to (6) and (20), the upper
bound of the stabilisable time-varying delay is Lmax = 1
for the proportional controller and Lmax = 1.134 for the
predictor-based proportional controller. In this case, for a fair
comparison, both controllers were tuned with the same delay
upper limit hmax = 0.95. Thus, the proportional controller
gain was chosen as k = 1.026 while the predictor-based
controller parameters were k= 1.1308, hp = 0.3hmax = 0.285.

0 20 40 60 80 100
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0.4

0.6

0.8

1

Fig. 3. Initial condition x(0) = 1 and h(t) = 0
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Fig. 4. Initial condition x(0) = 1 and h(t) = 0.9025

Figure 3 presents the closed-loop response for an initial
condition x0 = 1 and h(t) = 0. As can be seen, in both
cases the plant output converges to zero without overshoot.
Nevertheless the settling time within a range of 5% is
t5% = 32.4 and t5% = 56.0 for the proportional and predictive
controllers, respectively

Figure 4 presents the closed-loop response for an initial
condition x0 = 1 and h(t) = 0.9hmax = 0.855. The settling
time for the predictor-based controller is still better than
proportional controller, t5% = 25 against t5% = 35, with a
smaller overshoot, which justifies the use of the predictor in
both cases.

VI. STABILITY ANALYSIS USING SOPTD MODELS WITH
A ZERO

This section analyses unstable processes represented by a
delay-free second-order model with a zero, such as

G(s) =
s+ z

(s−a)(s+ p)
, (22)

where z,a, p ∈ R, such that z > p > a > 0.
A closed-loop system with a process represented by model

(22) is Hurwitz stable when using a feedback gain in the
range

k >
ap
z
. (23)

However, if the process represented by (22) presents time
delay, this gain k does not necessarily stabilise the process.

To guarantee stability for constant or time-varying delay,
by using the robustness analysis from Section II, the follow-
ing theorem can be stated:

Theorem 4: A closed-loop system with process model
(22) and feedback gain k > ap

z is stable for any time-varying
delay defined by ∆(u) = u(t −h(t)), with 0 ≤ h(t)< hmax, if
the following condition is satisfied:∣∣∣∣ k[( jω)+ z]
( jω)2 + jω(p−a+ k)+(kz−ap)

∣∣∣∣≤ 1
hmaxω

, ∀ω ∈ [0, ∞).

(24)

It is important to mention that there is a trade-off between
robustness and performance. If it is desired to improve the
robustness, satisfying (23), then it is necessary that k → ap

z
.

Therefore, condition (24) can be written as

∣∣∣∣ ap[( jω)+ z]
z( jω + p−a)+ap

∣∣∣∣≤ 1
hmax

, ∀ω ∈ [0, ∞). (25)

Condition (25) is closer to being violated at low frequen-
cies. Thus, with ω → 0, the upper bound of the stabilisable
time-varying delay is obtained as

hmax =
1
a
−
(

1
p
− 1

z

)
. (26)

Remark: As
(

1
p −

1
z

)
> 0, the upper bound of the sta-

bilisable time-varying delay hmax is worst when compared
to unstable FOPTD processes. To solve this issue, it is
suggested to use a phase-lead controller Ceq(s) = k

s+ p
s+ z

.
Thus, the maximum achievable robustness will be equivalent
to the one from unstable FOPTD processes.
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Fig. 5. Stability analysis for z = 10, a = 1

A. Numerical stability analysis

In this example, a second-order plus time delay plant, as
defined in (22), is used for analysis. Then let’s consider the
right-half plane pole and zero equal to a = 1, z = 10

Thus, Figure 5 demonstrates the tendency for the upper
bound of the stabilisable time-varying delay to increase as the
value of p approaches z, cancelling the zero of the process.

Then, for theorem 4 and (26), it can be derived that
stabilising condition (24) can only be violated for lower
frequencies, thus, it is required that k tends to ap

z , so, it
can be stated that:

|pa|
| jω||( jω)+(p−a)|

<
1

hmaxω
, (27)

meaning that

hmax < Lmax =
1
a
− 1

p
. (28)

However, this is still a conservative condition compared to
the FOPTD approach, in addition to the need to have k =
ap
z , or else the condition will fail and the system will be

unstable. To solve these questions, it can be used a phase
lead controller in the form

Ceq(s) =
k(s+ p)
(s+ z)

. (29)

In which the stable pole and zero dynamics are canceled,
in a way that the closed loop can now be described using
equation (5), showing that Theorem 2 is satisfied for the
aforementioned system and, so as for systems with FOPTD
models, it can be stated that constant and time-varying delays
are bounded by (6).

VII. SIMULATION RESULTS

This section provides two simulation examples for com-
paring methods of determining the maximum allowable delay
in certain systems. This allows for the observation that which
methods can be employed to define upper bound of the
stabilisable time-varying delay with greater margin, in other
words, in a less conservative manner.

A. Example 1

Addressing the time-varying problem of the network con-
trol system example from [4] in which the problem analysed
is from a SSF perspective, and in [21], with a SOF perspec-
tive analysis, resulting in the proposed strategy achieving
upper bound of the stabilisable time-varying discrete delay
of 19 samples for the proposed system:

˙x(t) =
[
−0.8 −0.01
1.00 0.1

]
x(t)+

[
0.4
0.1

]
u(t). (30)

And, considering the time sample the same as in both
articles as Ts = 0.5 and C = [0 1] as in [21], it is possible to
formulate a transfer function, such that:

G(s) =
0.1(s+4.8)

(s+0.7887)(s−0.08875)
(31)

Thus resulting in a second order transfer function with
a zero and an unstable pole such as in [22], where a =
0.08875, p = 0.7887,z = 4.8, and, using (26), as follows:

Lmax =
1

0.08875
−
(

1
0.07887

− 1
4.8

)
.

Then, leading to:

Ceq(s) = k = 0.146,
L < Lmax = 10.2081. (32)

And, Using a phase lead controller employing the tech-
nique from (29):

Ceq(s) =
0.185(s+0.07887)

0.2083s+1
,

L < 11.2678. (33)

That can be compared with the result on (32) showing
that the phase lead controller improved upper bound of the
stabilisable time-varying delay in 10.38%.

These comparisons are made to assess our results against
those presented in [4] and [21]. The upper bound of the sta-
bilisable time-varying-induced network delay is determined
using the previously mentioned time sample, as depicted in
Table I.

TABLE I
UPPER BOUND OF THE STABILISABLE TIME-VARYING DELAY.

Controller Delay Discrete Delay
SSF K = -[1.2625 1.2679] 2
SOF K = - 0.1488 19
P K = 0.146 10.2081

PD Ceq =
0.185(s+0.07887)

0.2083s+1
11.2678
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B. Example 2

To analyse the effect of a predictor-based controller on
the upper bound of the stabilisable time-varying delay, it is
possible to observe the effects of a Proportional controller
and the aforementioned predictor on a first order unstable
plant used in the first example of [24]:

G(s) =
3.433

101.1s−1
. (34)

In which a = 1 and the system have a time constant
τ = 101.1. In this formulation, it is possible to compare the
control technique from [6], resulting in:

Ceq(s) = k = 0.2913, (35)
L < 101.1. (36)

And, with the predictor controller technique in (20), leads
to:

Ceq(s) = k = 0.2913, (37)
L < 114.760. (38)

Showing that predictor-based approach widens the domain
in which the time-varying delay can be dealt without causing
instability in comparison with proportional controller.

VIII. CONCLUSIONS

This work proposes and investigates the potential benefits
of analytical stability conditions to determine the upper
bound of the stabilisable time-varying delay, by using an
analysis on frequency domain, for closed-loop systems with
unstable FOPTD and SOPTD process models. Moreover, it
proposes the use of predictors to further improve this upper
bound in the case of time-varying delays with large variable
range and a practical rule to decide when the predictor is the
better choice.

The proposed methodology, despite its simplicity, is used
to stabilise the system presented in [21] and surpasses its
results (obtained by optimisation) for the upper bound of the
stabilisable time-varying delay, also computing an analytic
solution with a lower computational cost.

Possibilities for future works include comparing the pro-
posed analytic expressions for the upper bound of the
stabilizable time-varying delay with the time delay values
found using the Lyapunov-Krasoviskii method. Additionally,
another potential task is to generalise the observations made
in this work to process models of any order.
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