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Online Model-free Safety Verification for Markov Decision Processes
Without Safety Violation

Abhijit Mazumdar, Rafal Wisniewski and Manuela L. Bujorianu

Abstract—1In this paper, we consider the problem of safety
assessment for Markov decision processes without explicit knowl-
edge of the model. We aim to learn probabilistic safety specifi-
cations associated with a given policy without compromising the
safety of the process. To accomplish our goal, we characterize
a subset of the state-space namely proxy set, which contains the
states that are near in a probabilistic sense to the forbidden set
consisting of all unsafe states. We compute the safety function
using the single-step temporal difference method. To this end,
we relate the safety function computation to that of the value
function estimation using temporal difference learning. Since the
given control policy could be unsafe, we use a safe baseline sub-
policy to generate data for learning. We then use an off-policy
temporal difference learning method with importance sampling
to learn the safety function corresponding to the given policy.
Finally, we demonstrate our results using a numerical example.

Index Terms— Online safety verification, Markov decision
processes, reinforcement learning, temporal difference, proxy set.

I. INTRODUCTION

In safety-critical systems, assessing safety associated with a
control policy is crucial during the deployment of the control
policy. Safety verification for dynamical system is usually
studied in two settings: worst-case [1]-[3] or stochastic [4]—
[8]. In the worse-case set up, safety corresponds to the
property of never visiting the unsafe region. While the systems
may be subjected to uncertain disturbance input, a hard upper
bound on the disturbance input is assumed to be known. In
the stochastic setup, safety is defined as the probability of
reaching the unsafe region with a small probability below a
prescribed margin.

If the operational environment is changing or no prior
information regarding the system model, or the environment
is known, then safety needs to be verified during operation
[9]-[11]. This set-up is called online safety verification.

The works described above are model-based, i.e., an appro-
priate system model is required. Data-driven safety verifica-
tion methods are getting attention, of late, as they eliminate
the requirement of a model of the systems [12]-[17]. Among
these works, [17] considers a probabilistic safety notion,
whereas [12]-[16] consider the worse-case safety definition.
For systems with discrete-time and continuous states, [12],
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[13] proposed a data-driven method based on barrier certifi-
cate to verify safety formally. In [14], a data-driven approach
with formal guarantees is presented for networks of discrete-
time sub-systems. To this end, a sub-barrier function for each
sub-system is computed, then the overall barrier function is
derived from the individual sub-barrier function. Further, [13],
[15], [16] converts the problem of finding barrier certificate
as a robust convex problem.

Main Contributions: In the existing works on data-driven
safety verification, it is assumed that an existing data set is
available. This is called the offline set-up. However, many
times, safety needs to be verified during the operating phase
of a system in an online fashion [9]-[11]. If no prior data
is available, the data-driven online set-up becomes more
challenging as safety can be jeopardized during the learning.

To the best of our knowledge, the existing data-driven
methods, except for [17], are offline. In this paper, we
develop an online safety verification method for stochastic
systems without jeopardizing the system’s safety. We con-
sider a Markov decision process framework to represent the
stochastic dynamics. Unlike [17], in this work, we do not need
to know even a partial model of the system. This relaxation
makes the problem much harder compared to [17]. We use
a single-step temporal difference method (TD(0)) to learn
the safety function corresponding to a given farget control
policy m. If the TD(0) method is used naively, then the target
policy 7, which needs to be assessed, must be used. However,
since the policy m is arbitrary and could be unsafe, employing
it during the learning phase can lead to violation of the
safety constraints. To circumvent this issue, we use an off-
policy TD(0) method with importance sampling [18], [19]. We
assume that at least one safe baseline sub-policy for each state
of a sub-set, called proxy set, of the state-space is known. This
assumption is an essential requirement in safe reinforcement
learning. The safe baseline sub-policy is needed to use the
off-policy TD (0) method to learn the safety function without
violating the safety constraints.

The organization of the paper is as follows. In Section
II, we set up the relevant notations. We present the system
description and the problem formulation in Section III. The
main results are described in Section IV. In Subsection IV-A,
we presented the algorithm following a thorough discussion.
With a numerical example, we demonstrate our results in
Section V. Finally, in Section VI, we conclude the paper and
highlight a future extension to this work.

II. NOTATIONS

We consider an MDP with a set of finite states denoted
by X and a finite set of finite actions represented by 4. We
consider a sample space {2 of all sequences of the form w =
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(x0,a0,x1,0a1,...) € (X x A)>® with 2; € X and a; €
A. By F, we denote the o-algebra generated by coordinate
mappings: X;(w) = z; and A;(w) = a;. By upper case X;
and A;, we denote random variables, while we use x; and a;
for deterministic values, i.e., their realizations, at time-step ¢.
Further, we assume that the initial state X, has a distribution
. In this work, we consider stationary policies, i.e., maps
m: X = A(A), with A(A) = {(p1,...,p14]) € [0, 14
p1+...+pa = 1}. A sub-policy 7’ for a subset of W C X
is defined as 7' : W — A(A). For a fixed initial distribution
1 and a policy 7, we define recursively the probability IP# on
F by

PALX, = 2] = u(x)
PLIA; = a | Xy = 2] = w(a|z)
PR X =y | Xy =2, 4 = a] = p(z,a,y)

We write PY := IPfry for the delta distribution concentrated at
y. The expectation with respect to PY is denoted IEY.

ITI. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

We consider an MDP with a set of states X’ and a set of
actions A. Suppose the set of states is partitioned into a target
set E C X, a set of forbidden states U, and H := X'\ (EUU)
be the set of living (taboo) states.

This work deals with probabilistic safety. For any target
control policy, or simply target policy 7, in order to assess
safety, a safety function Sy (z) is defined as follows [8].

Definition 1: (Safety Function) For each state € H, the
safety function is the probability that the realizations hit the
forbidden set U before reaching the target set F, i.e., for a
fixed policy ,

Sp(x) =Pty < 7R],

where 74 is the first hitting time of a set A. .

We consider a probabilistic safety notion called p-safe [7],
[8]. Following definitions are central to this work and are
inspired from [7], [8].

Definition 2: (p-Safe State, p-Safe MDP and p-Safe Policy)
For a given policy 7, a state * € H is called p-safe if the
safety function does not exceed p, i.e., Sy(x) < p. Similarly,
an MDP is called p-safe with a policy 7 if: meag Sr(z) < p.
In this case, 7 is called a p-safe policy. ’ °

It should be noted that we use safety and p-safety synony-
mously throughout the paper.

We now formally state the problem that we address in this
work as follows.

Problem P: Estimate the safety function for the given
target policy m without rendering the MDP unsafe, i.e.,
ensuring that S;(z) < p for each state z € H.

Since the target policy, 7, could be arbitrary; if we apply
it, we might jeopardize the safety of the MDP. Hence, we
must use an indirect way to learn about the safety function
corresponding to 7. In order to solve Problem P, we now
introduce a proxy set as follows. If we know the proxy states,
we can learn the safety function faster than not knowing them.

Definition 3: (Proxy Set) We call the subset U’ € H as a
proxy set of an MDP, if it has the following properties:

N.1 7y < 1y, almost surely.
N.2 For all z € U’, there exists a € A and y ¢ U such that
p(z,a,y) > 0. .

The proxy set U’ can be considered a neighborhood of the
forbidden set U as the probability of hitting U’ before hitting
the forbidden set U is 1.

Remark 1: To motivate the need for defining proxy states,
we can think of autonomous robot navigation. The robot hits
an obstacle only if it crosses certain states (speed, angular
velocity, etc.). Not all states directly lead to an unsafe state
without visiting other states.
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Fig. 1. Tllustration of the taboo set, proxy set, forbidden set, and target set.
We now introduce the concept of safe action and safe
baseline sub-policy for the proxy states =’ € U’. These will
enable us to learn the safety function of a given policy without
violating the safety constraint.
Definition 4: (Safe Action) For each proxy state 2’ € U’,
we call an action a safe action, denoted by a*?/¢(z'), if

p(a’,a*e(2),y) =0, Vy € U.

[ ]

Definition 5: (Safe Baseline Sub-Policy) We call a sub-

policy defined for the proxy set U’ a safe baseline sub-policy,
denoted by 77, if

Sys(z') <p, V2’ €eU".

L]
Throughout the paper, we have the following assumptions:
i) The proxy set U’ is given.
ii) A safe baseline sub-policy 7, for each proxy state 2’ €
U’, is known.

Remark 2: Knowledge of proxy states is not mandatory for
the results presented in this paper. However, it makes learning
faster than not having knowledge of proxy states.

Remark 3: A safe baseline policy is a standard assumption
in safe reinforcement learning. We cannot guarantee safety
throughout the learning process without the knowledge of a
safe policy.
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IV. ONLINE SAFETY VERIFICATION

In this section, we present the algorithm for online safety
verification. Before presenting the algorithm for estimating the
safety function, we need to establish the following results.

As given in [8], safety function can be expressed as follows.

Lemma 1: ([8]) Suppose, 7 = Tyug is almost surely finite.
The safety function for each state x € H, with a policy 7, is
then given by

T—1

= E,Iwr Z H(Xt7At),

t=0

where k(z,a) =3 (2, a,y). .

Remark 4: If we knew the transition probabilities p(x, a, y)
from the proxy set to the forbidden set, as in [17], we could
use the standard TD(0) method to estimate the safety function.
Since we do not know the transition probabilities, we need to
express the safety function as follows. °

Proposition 1: If T = Tyyg < co, almost surely, then the
safety function for any state * € H can be expressed as
follows:

Sy(x)

T—1
Sr(x) =E7 » (X, Ay), (D
=0
where,
1, if Xy €U
X, Ay = 2
(X, Ar) 0, otherwise. @

Proof: Observe the following:
]Efr[C(Xt, At)|Xf = .f, At = a]
= EZ:T [EW[C(Xt, At)|Xt = i’, At = CLH

=E2[>_ p(#,a,y)]

yeU
= Ei[ﬁ}(Xt,AtﬂXt = i’,At = a]

Thus, the expressions of the safety function given in Lemma 1
and Proposition 1 are equivalent. Hence, using Lemma 1, the
safety function can be expressed as given in the Proposition.
|
The following property relates the safety function of proxy
states 2’ € U’ with the safety function of states x € H \ U’.
This property will be used to ensure safety during the learning
phase.
Proposition 2: For any state x € H, the following is true:

3)

Sx(z) < max Sr(z').
ajle !

Proof: Following the definition of the safety function,
for any x € H, we get the following:
Sr(z) =Py < 7g]
" Py < mE|PL[X = '] (let 7 = Tirup)
z'eU’
> Sal@)PHXr =2
z'elU’

max Sy ().
o' el

<

The second equality is a direct consequence of the first
property of the proxy states. [ ]

Remark 5: As a consequence of Proposition 2, if we apply
a safe baseline policy only for the proxy states U’ and use a
target policy 7 for other states H \ U’, the MDP will be safe
throughout the learning phase. °

A. Safe learning of the safety function

We notice that the safety function in (1) resembles the value
function considered in reinforcement learning. The single-step
temporal difference method, TD(0), is one of the most widely
used methods to compute the value function. Hence, we also
use the TD(0) method to estimate the safety function. Suppose
Si(x) is the estimated safety function for state = in the tth
learning step, and after applying A; according to 7 the process
reaches state y. Then, according to the TD(0) method, the
update rule for the estimated safety function is as given below:

Spr1(z) < Sp(w) + () [er + Se(y) — Se(w)],

1, ifyeU
0, ify¢U’

4
where, ¢; = { @)

In the above expression, ¢; + S (y) is called the TD rarget.
Now, suppose the learning rate oy (z) is chosen such that
following conditions are satisfied:

(i) au(w) = o0
. (5)

Then, using the results presented in [20], it can be inferred
that S;(z) converges to the true safety function S(x) for each
reH.

Since the hitting time is finite (almost surely), we con-
sider an episodic temporal difference TD(0) algorithm. In an
episodic learning framework, whenever the process hits the
terminal states, learning is resumed from an arbitrary initial
state. Since the given target policy 7 could render the MDP
unsafe, we use a safe baseline sub-policy 7° for the proxy
set to generate data. However, the goal is to learn the safety
function S (z) with the target policy m. Since 7° is safe
by definition, the safety is always maintained for the proxy
set U’. Further, if we ensure that the safety function for the
proxy set U’ is less than p, then from Proposition 2, it is
made sure that the MDP is safe. The policy that is used to
generate necessary data during learning is called the behavior
policy, denoted by 7. The behavior policy w° that we use is

as follows:
T
P 5
T

Since the behavior policy 7 is chosen differently than the
target policy w, if we use the standard TD(0) naively, then
we would only learn S+ (z), and not Sy (). To resolve this
issue, we use a variant of TD(0) with per-decision importance
sampling, which is an off-policy value function estimation
method as given in [18]. In this method, for the proxy states
a2’ € U’, the update rule for the estimated safety function

takes the following form:

forz e H\U'

forxz € U'. ©

7(alz’)

St+1(xl) <~ St(xl) +af(ml)[ﬂ_s(a‘x,)

(ce+Se(y) = Se(2")], (D
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where, ¢; is as given in (4) and % is called the

importance-sampling ratio. The learning rate is kept similar to
(5). From the results presented in [19], it follows that S; 1 (z")
converges to the true safety function Sy (a’) with the target
policy m, almost surely.

From Proposition 2, it is clear that if we ensure that the
proxy states ' € U’ are safe, then the states z € H \ U’ will
be safe irrespective of the sub-policy used for them. However,
since we use the policy 7 that needs to be assessed for any
state x € H \ U’, the update rule is the standard one as given
in (4).

Further, to estimate the safety function with the behavior
policy 7, the update rule is given by:

Sti1 (@) « 8P () + ar(w)lee + S (y) — S¢ (@),

1, ifyeU
0, ify¢U’

8
where, ¢; = { ®)

Algorithm 1 : Safe TD(0) with importance sampling:
1: Input: The given target policy 7w for which safety is
needed to be evaluated, a safe baseline sub-policy 7%,
a safe behavior policy 7°, learning rate oy (z) for each
x € H, safety parameter p, proxy set U’;
2: Initialize: Sy (z) for each x € H arbitrarily, Si(z) =0
foreachz c UUE, t=1;
for Episodes (k =1,2,...,L) do
Draw an initial state z uniformly from H;
for Iterations (i = 1,2,...,7) do
if x €U’ then
Apply a safe action A; = a*3/¢(x) according
to the safe baseline sub-policy 7°;

A O

8: else
9: Apply action A; according to the target policy
U
10: end if
11: Observe the new state y, and ¢; according to (4);
12: if x € U’ then
13: Update the safety function as follows:
(alz)
St+1(z) + Se(z) + at(fﬂ)[ﬂs(a‘x) (e + Se(y) — Se())];
©)

14: else (x € H\U)
15: Update the safety function as follows:

St1(x) < Se(x) + ar(z)[ce + Se(y) — Se(w)]; (10)
16: end if
17: Set x < y;
18: Sett<i+1;
19: if z is a terminal state, i.e., x € U U E then
20: Terminate the Episode.
21: end if
22: end for
23: end for

V. ILLUSTRATING EXAMPLE

Consider the MDP as shown in Figure 2. There are 12

T Target States

Forbidden States

Fig. 2. Example MDP.

states, of which two are forbidden, and two are target states.
Specifically, the set of states is X = {1,2,...,12}, target set
is E = {9, 11}, forbidden set is U = {10, 12}, the taboo set
is H=1{1,2,...,8}, and the set of actions is A = {1, 2}.
While we do not need any model parameters, i.e., the
transition probabilities, we assume the proxy set is known.
In the above example, the proxy set is U’ = {3,4,5,6,7,8}.
Suppose we are given to assess the safety function with the
target policy 7, which is a uniformly random policy for each
state, i.e., m(a|Jz) = 0.5 for each « € H and a € A.
Assume that the MDP must be p-safe with p = 0.1. We
assume that a safe policy is known from each proxy state
2’ € {3,4,5,6,7,8}. For each 2’ € U’, a safe sub-policy is

as follows:
0.96
S N )
7T(a|g”)“{().()4,

ifa=1
if a =2,

Assume that hs = 0.4, hy = 0.6, hgy = 0.4, hgo = 0.6
and hy = 0.5. We show the convergence of the estimated
safety function with the target policy and the behavior policy
in Figure 3 and 4, respectively. From the figures, it can be
seen that the safety function with the safe behavior policy is
less than p for all states, hence p-safe. Learning rate oy ()
is chosen as follows:

0.001,
Qg = Q-1 )
14+(10—6-log(k+1) /2

for all episodes k < L£/2
for all episodes k > L/2.

In Table I, we have shown the true value of the safety
function for the target policy m and the behavior policy.
These are estimated using the result given in [8]. Further,
the estimated safety function for the policies 7 and 7°, at the
end of the last episode £ = 107, are shown. It is observed
that the final estimated safety functions Sg(x) and S%(z)
approach arbitrary close to the actual values.
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all the states converge to the true value of the safety function.
Further, we have shown that the safety functions with the
behavior policy, that is followed during the learning, also
1 converges to their true values.

| We are working on extending these results to MDP with
a large number of states, and continuous dynamical systems.
To this end, we will use function approximation-based re-
1 inforcement learning techniques. Further, we shall study the
l convergence of the proposed algorithm.
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