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Abstract— In this work, we introduce a novel learning-
based controller tailored for autonomous control of a batch-
type precipitation process involving calcium and magnesium
carbonates. The process takes in fluid containing valuable
materials such as Ca+2 and Mg+2 ions, along with impurities
and seed particles, to facilitate the sequential precipitation of
these ions into their respective carbonates. The controller’s goal
is to attain a specified size of the precipitated particles under
different process uncertainties. Here the residence time, i.e. the
time allowed for the ions to remain in fluid phase, is used as the
manipulation variable. The controller is designed as a solution
to a stochastic optimal control problem and implemented using
machine learning techniques. For the prediction model, we
use convolutional neural networks (CNN) and for the control
synthesis, we use a type of recurrent neural networks (RNNs).
The designed control is learnable, adaptable to varying process
dynamics and robust to random disturbances in the process,
thus resulting in a learnable adaptive, and robust controller
(LARC). The effectiveness of LARC is validated through
different simulation-based tests.

Index Terms— stochastic control, learning-based control, pro-
cess control, particulate processes.

I. INTRODUCTION

Addressing the global challenge of climate change ne-
cessitates innovative solutions for reducing greenhouse gas
emissions and permanently sequestering carbon dioxide. Car-
bon mineralization, a concept initially proposed in 1990 [1],
offers a promising avenue for storing CO2 as environmen-
tally benign and stable carbonates. This approach presents
an opportunity to establish a permanent and leakage-free
method for CO2 disposal. Among the myriad of alkaline
earth metals found in nature, calcium and magnesium stand
out as the most abundant, making them ideal candidates for
carbonate formation [2]. Natural minerals, such as Antig-
orite, Lizardite, Forsterite, Augite, and Wollastonite, along
with industrial waste streams like waste cement, coal fly
ash, steelmaking slag, platinum group mineral mine tailings,
and red gypsum, can be employed as feedstocks for mineral
carbonation [3], [4], [5]. This research project explores the
possibilities and challenges of ex-situ mineral carbonation,
a process that holds the potential to transform CO2 into a
stable and sustainable resource.
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In the realm of carbon mineralization and the control of
carbonate precipitation, our research delves into the intri-
cacies of distributed chemical processes. These encompass
diffusion-convection-reaction processes, where the control of
spatially distributed profiles is paramount. More often than
not chemical processes are characterized by the interplay of
macroscopic and microscopic phenomena, which directly in-
fluence the control of material properties. Specifically, within
the context of carbonate precipitation process, our primary
concern revolves around the precise control of particle size
distribution (PSD), a pivotal factor in optimizing the desired
outcomes of carbonate formation and, ultimately, sustainable
carbon capture and storage solutions.

In the domain of controlling distributed chemical pro-
cesses, process models are typically represented as hyper-
bolic/parabolic partial differential equations (PDEs), coupled
PDEs and molecular dynamics/Monte-Carlo models, and
integro-differential equations (population balances). The field
of control for such systems has witnessed significant ad-
vancements. Presently, methodologies for control encompass
a range of techniques. Nonlinear parabolic PDEs, as docu-
mented in [6], are harnessed for deriving low-order ordinary
differential equation (ODE) models via Galerkin’s method
and the approximation of inertial manifolds. This allows
for the synthesis of nonlinear and robust controllers [7],
as well as the optimization of actuator/sensor placement
through dynamic optimization techniques, as exemplified
by [8]. Moreover, control strategies have extended to en-
compass other categories of distributed systems, including
particulate processes and fluid dynamic systems [9]. In
parallel, the control of distributed parameter systems has
yielded diverse approaches, with developments extending
to hyperbolic PDEs, passivity-based control methods [10],
backstepping boundary control strategies [11], and predictive
control techniques [12], [13].

The above mentioned control methodology, though not
exhaustive, can be broadly classified as classical/conventional
control methods and some of the main challenges of such
methods are as follows. Firstly, the issue of robustness is
the most prominent one. Since particulate processes are
inherently effected by noisy perturbations, classical meth-
ods struggle to cope thus rendering them less effective in
adapting to real-time variations. Secondly, the problem of
autonomy arises due to the reliance on ex-situ measure-
ments and actuation, leading to a lack of real-time feedback
mechanisms. This deficiency necessitates frequent system re-
identification, thus requiring human intervention, thus imped-
ing the desired level of production throughput. Thirdly, the
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limitation of classical control methods lies in their static or
dynamic optimization formulations, which frequently hinder
their ability to learn from data and performs repeated calcu-
lations for varying input conditions. This stands in contrast
to statistical optimization formulations, which offer a broader
horizon for learning from empirical observations.

The success of machine learning techniques, particularly
deep neural networks (DNN), has significantly impacted
natural and engineering sciences, including control of par-
ticulate processes. DNN-based reinforcement learning (RL)
has also gained interest in control domains. The Deep-
Q-Network (DQN) technique is an example of this ap-
proach [14], which has been successfully applied in various
industrial contexts, including optimizing multi-stage precipi-
tation processes for zinc product purity [15]. However, DNNs
and RL methods have limitations, such as concerns about
mathematical explainability and risk quantification. This has
led to the exploration of model-based RL approaches, which
require specific dynamical models and numerical schemes for
simulations tailored to each process [16], [17], which further
leads enables DNNs to serve as numerical solvers for sim-
ulating complex systems [18]. DNN-based ML techniques
offer a promising opportunity to address particulate process
control challenges and generalize control strategies across
processes, enabling organizations to achieve high levels of
autonomy.

In this work, we present a novel control method for
the control of a two-particle precipitation process that is
robust to process noise and model imperfections and adaptive
to the variability of the process dynamics. To this end,
we present a suitable stochastic partial differential equation
(SPDE) to model the evolution of particle size distribution
(PSD) and introduce a corresponding stochastic optimal
control problem (SOCP). To solve the SOCP we employ
ML techniques where we use DNNs for control synthesis as
well as predicting the process dynamics. More specifically,
for the former we employ a Gated Recurrent Unit (GRU)
based RNN architecture, and for the latter CNN based UNet
architecture.

The structure of this article is as follows: Section III
provides a formal problem formulation including process
modeling in Section III-A and predictive control formulation
in Section III-B. In Section IV, we delve into the design
concepts of the learning-based control system followed by
details about dataset generation and network architecture
in Section IV-A and Section IV-B respectively. Moving
forward, Section V offers an insightful discussion of the
outcomes derived from the numerical simulations, and lastly,
in Section VI, we summarize the findings, emphasize their
significance, and provide concluding remarks.

II. NOTATION AND PRELIMINARIES

The space of real, natural, and integer numbers are denoted
as R, N and Z respectively. The space of positive real
numbers is denoted as R+. The set of real k ×m matrices
is denoted by Rk×m. The transpose A ∈ Rk×m are denoted
by A⊤. diag(f) ∈ Rd×d denotes the diagonal matrix formed

from vector f ∈ Rd. For a function f : [0, T ]× [0, S]→ R,
(t, x) 7→ f(t, x), ft(·) is a short hand notation for f(t, ·).
A vector function F : [0, T ] × [0, S] → Rd is also denoted
as F = [F 1, · · · , F d]⊤ where F i : [0, T ] × [0, S] ∈ R for
i ∈ {1, · · · , d}. The zero matrix of appropriate dimensions is
denoted by 0. The space of Lebesgue square-integrable func-
tions f : [0, T ]→ [a, b] with [a, b] ∈ R and T > 0 is denoted
as L2([0, T ]; [a, b]). Depending on where f ∈ L2([0, T ];Rd)
of f ∈ Rd, the norm ∥f∥2 either denotes the L2 norm or
the Eucledian norm. For a number x ∈ R, |x| denotes the
absolute value of x. For X a metric space and X ∈ X
a random variable (rv) then EX [Y ] denotes expectation of
Y with respect to a distribution defined on the space X
via X . X ∼ Unif([a, b]) denotes a rv X that is uniformly
distributed over the interval [a, b] ∈ R. Analogously X ∈ Rd

and X ∼ Unif([a, b]d) denotes uniformly distributed rv X
over d > 0 dimensional hypercube.

III. PROBLEM FORMULATION

This work is focused on the control of a particulate process
that is operated in batch mode. The process of interest
is the precipitation of two carbonate substances namely
CaCO3 and MgCO3 from an aqueous solution containing
the substances as cations i.e. in their respective ion form
namely Ca2+ and Mg2+ respectively. The ion-based solution
is placed in a reaction tank or vessel which is externally
mixed with seed particles and carbon dioxide gas CO2.
Further, the solution is externally influenced by factors such
as pH, temperature, and pressure which ultimately impacts
the reaction kinetics of the metal ions leading to formation
of CaCO3 and MgCO3. The kinetics of the process can be
described by the following reactions:

CO2 (g) → CO2 (aq)

CO2 (aq) + H2O(i) → HCO3
−(aq) + H+(aq)

HCO3
−(aq)→ CO3

2−(aq) + H+(aq)

OH−(aq) + H+(aq) → H2O(i)

Mg2+(aq) + CO3
2−(aq) → MgCO3(s)

Ca2+(aq) + CO3
2−(aq)→ CaCO3(s)

(1)

This sequence of reactions characterizes the chemical process
of carbonate substances which then precipitates out from the
solution as a solid material. Altogether, this is referred to as
the carbonate precipitation batch process (CPBP). Notably,
it is essential to remark that calcium carbonate CaCO3 and
magnesium carbonate MgCO3 have different precipitation
properties with the former in general having a higher precip-
itation rate compared to the latter [19]. Thus under suitable
operational conditions, i.e. process dynamics condition, one
could aim to selectively precipitate one substance before the
other, preferably CaCO3 first and then MgCO3 later.

A. Process modelling

For the control of selective precipitation of MgCO3 and
CaCO3 we model the underlying precipitation process
by a coupled system of ordinary and partial differential
equations. Here for the sake of simplicity as well as due
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to the restrictions in experimental setting, we make several
simplifications. Firstly, we consider that both Mg2+ and
Ca2+ ions do not interact with each other in any way, thus
allowing us to decouple the dynamical equations for the
two. Secondly, we neglect the process of nucleation as a
result of which the birth term can be neglected. Thirdly, the
effects of thermodynamic factors such as temperature and
pressure are also ignored. Based on these simplifications,
the precipitation of CaCO3 and MgCO3 are treated
independently of each other. Following these considerations,
we employ population balance equation (PBE) to model
the evolution of particle size distribution (PSD) of the
respective carbonates. The PBEs are in turn coupled with
the evolution of the respective ion concentrations which are
in turn modeled using ODEs. Let f1 : R+ ×R+ → R+ and
f2 : R+ × R+ → R+ represent the PSD of CaCO3 and
MgCO3 respectively, with (t, x) 7→ f j(t, x) denoting the
density of particles having the size x > 0 at time t ≥ 0, for
j ∈ {1, 2}. Similarly, let c1 : R+ → R+ and c2 : R+ → R+

represents the concentration of Ca2+ and Mg2+ ions in the
solution. Based on this notation and letting j ∈ {1, 2}, the
simplified model for precipitation takes the following form:

∂f j

∂t
(t, x) =

f j
0 (x)− f j(t, x)

τ j(t)
−Gj(t)

∂f j

∂x
(t, x), t, x > 0

dcj

dt
(t) =

cj0 − cj(t)

τ j(t)
− ρkjvG

j(t)M j(t), t > 0

Gj(t) = kjg

(
cj(t)

cjsat
− 1

)1.5

, (2)

Bj(t) = ρjkjb

(
cj(t)

cjsat
− 1

)2.5

M j(t),

M j(t) =

∫ ∞

0

x2f j(t, x)dx,

f j(0, x) = f j
0 (x), cj(0) = cj0 f j(t, 0) =

Bj(t)

Gj(t)
.

As already mentioned above, for j ∈ 1, 2, f j(t, x) ∝ 1
m4

denotes the PSD of j-th substance, x ∝ µm signifies the size
of particles, cj(t) ∝ mol

l represents the concentration of j-th
species of ion, Gj(t) ∝ 60m

min characterizes the growth rate of
the j-th substance, and M j(t) ∝ 1

m is the second moment
of f j(t, x), indicative of the surface area of the growing
carbonate particle. The term τ j(t) ∝ min stands for the
residence time of the j-th species, indicating the duration for
which the j-th species of ions remain in the system. Since τ1

and τ2 are taken to be independent, they provide the option
to selectively precipitate one substance before the other
under suitable process operational conditions. Additionally,
for each j-th ion species, ρj ∝ mol

m3 represents density
constant, cjsat ∝ mol

l corresponds to the saturation constant,
kjg ∝ 60µm

min signifies the growth rate coefficient and kjv = 1
is the particle shape coefficient.

The introduction of stochastic elements into the model is
essential for accounting for the inherent imperfections in the
model, the impurity of solutions, and measurement errors.
To account for these factors, we represent the system (2) by

incorporating a standard Brownian motion as a stochastic
noise term for the ion concentration equation, thus allowing
us to consider the effects of thermodynamic fluctuations
of kinetic reactions as well as for the impurities in the
ion concentrations. Altogether, due to the coupling with
a PBE, we obtain, in the general sense, Stochastic Partial
Differential Equation (SPDE). For t ∈ (0, T ], the SPDE
version of (2) is given as

dCt = [Ut(C0 − Ct)− ρKvG(t)M(t)] dt+ σ(t)CtdWt,

∂tFt = Ut(F0 − Ft)−G(t)∂xFt, (3)

F0 = F (0), F (t, 0) =

[
B1

G1
,
B2

G2

]⊤
, C(0) = [c10, c

2
0]

⊤,

where, Ft = [f1(t, ·), f2(t, ·)]⊤, Ct = [c1(t), c2(t)]⊤,

Ut = diag([u1t ,u
2
t ]

⊤), ujt =
1

τ j(t)
,

Kv = diag([k1v, k
2
v]

⊤),Kb = diag([k1b , k
2
b ]

⊤),

Kg = diag([k1g , k
2
g ]

⊤), Csat = diag([c1sat, c
2
sat]

⊤),

ρ = diag([ρ1, ρ2]⊤), G(t) = diag([G1(t), G2(t)]⊤),

σ(t) = diag([σ1, σ2]⊤),M(t) = diag([M1(t),M2(t)]⊤).

Here (Wt)t≥0 = ([W 1
t ,W

2
t ]

⊤)t≥0 is standard Brownian
motion (standard Wiener process) on R2 and defined on
the probability space (Ω,F ,P), and Ft ⊂ F denotes the
filtration generated by Wt. Furthermore, the components W 1

t

and W 2
t of Wt are independent of each other for all t ≥ 0.

For the sake of notational simplicity and convenience, we
shall write (3) compactly as an abstract Cauchy problem

dXt = [A(Xt, Ut;θ)Xt +H(Xt, Ut;θ)]dt+ΣtdWt

X(0) = X0

A(Xt, Ut;θ) :=

[
−G(t)∂x − diag(Ut) 0

0 −diag(Ut)

]
,

(4)

Xt := [F⊤
t , C⊤

t ]⊤, Σt :=

[
0 0
0 σ(t)

]
,

Ht :=

[
diag(UtF0)

diag(UtC0)− ρKvG(t)M(t)

]
,

θ := [k1v, k
2
v, k

1
g , k

2
g , k

1
b , k

2
b , ρ

1, ρ2, c1sat, c
2
sat]

⊤.

Here A denotes an unbounded nonlinear operator whose
domain adheres to the boundary conditions, Ht denotes the
nonlinear reaction terms, θ denotes the vector of process
parameters, and Ut denotes the control.

B. Predictive control formulation

Our objective is to design an effective control strategy
for the task of selective precipitation of carbonate
precipitation batch process. For this, we formulate a
stochastic optimal control problem (SOCP) based on
an underlying objective/cost function. The latter takes
the following generic form, capable of incorporating the
corresponding performance objectives of the process.

J(x, U ;θ, Y ) = Ex

[∫ T

0

L(Xs, Us)ds+ g(XT , YT )

]
,
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where Ex[·] := E[·|X0 = x]. Here, the cost function
comprises two components: a running cost L(Xt, Ut, Yt),
and a terminal cost g(XT , YT ), with Y representing the
reference or the target state. In the current implementation,
these terms have the following specific form:

L(x, u; y) := αu∥u∥22, αu := 0.01,

g(x, y) := αT ∥x− y∥22, αT := 1.

The weights αu ∝ min and αT ∝ m4. Thus, the
resulting total cost is a non-dimensional number. Based
on (5) and letting U := L2([0, T ]; (umin, umax)

2) with
umin, umax ∈ (0,∞), the corresponding SOCP for
computing an optimal control policy is given as

U∗ = arg min
U∈U

J(x, U ;θ, Y ), such that (4) holds.

Thus given, (x,θ, Y ), the solution U∗ to (5) can be viewed
as a mapping (x,θ, Y ) 7→ U∗. This mapping in turn defines
a (optimal) control law that is represented as

U∗ = π∗(x,θ, Y ) ∈ U (5)

The standard techniques for solving (5) involve successive
state and adjoint equation resolutions until convergence.
However, due to the computational inefficiency of these
methods, especially when dealing with the stochastic PDE in
(3), alternatives like the Hamilton-Jacobi-Bellman equation
become resource-intensive [20]. To address this, a statistical
approach is preferred, offering twofold benefits: it provides
optimal control mapping, reduces the need for repetitive and
costly SOCP solving, and allows for broader automation
potential by handling diverse inputs. Consequently, in the
following section, a statistical optimization formulation and
its DNN-based implementation will be presented.

IV. DNN IMPLEMENTATION

Denoting X as the input space for (5), with
X ∋ ξ = (x,θ, Y ), our focus is to create a map ξ 7→ Λ(ξ)
yielding the SOCP solution Λ(ξ) = π∗(ξ). We represent
Λ(ξ) using a parameterized estimator λ̂ 7→ Λ(ξ; λ̂), λ ∈ Rl,
l ≫ 0, ensuring Λ(ξ; λ̂) = π(ξ) for nearly every ξ ∈ X .
A weaker criterion is to attain EX

[Λ(ξ; λ̂)] = EX
[π(ξ)],

demanding Λ(·; λ̂) to be an unbiased estimator of π(·). This
leads to the statistical optimization problem (SP)

λ̂ = arg min
λ∈Rl

E
X
[J(x,Λ(ξ;λ);θ, Y )].

Analogously, given a set of X = {ξk}k={1,,̇m} of m input
samples from X , the discrete SP takes the following form

λ̂m = arg min
λ∈Rl

1

m

m∑
k=1

J(xk,Λ(ξk;λ);θk, Y k).

J(x,Λ(ξ;λ);θ, Y ), after temporal discretization, is given as

J(x,Λ(ξ;λ);θ, Y ) ≈ Ex

[
N∑
i=1

∥Ûti∥22 + ∥XtN (Û)− YtN ∥22

]

≈ 1

n

n∑
q=1

N∑
i=1

∥Ûq
ti∥22 + ∥X

q
tN (Λ)− Y q

tN ∥22.

Since the input samples ξ are independent of the process
noise (Wt)t≥0 we can consider the k-th input sample in
turn contains n process noise variations so as to obtain
M = m × n samples altogether. Based on this we can
combine the input-averaging and the noise averaging to
obtain the following SP

λ̂M = arg min
λ∈Rl

1

M

M∑
k=1

N∑
i=1

∥Ûk
ti∥22 + ∥Xk

tN (Ûk)− Y k
tN ∥22,

= arg min
λ∈Rl

LM
Λ (λ;X) (6)

where Λ(ξk; λ̂) = Ûk
t0:tN−1

= [Uk
t0 , · · · , Uk

tN−1
]⊤ and

Xk
t1:tN (Ûk

t0:tN−1
) is the predicted state of the process

under the control policy Ûk
t0:tN−1

. Following this, the
parameterized optimal control policy function Λ(·;λ) is
implemented as a deep neural network (DNN) whose
internal parameter λ is determined as a solution to the
SP (6). This requires the of use stochastic approximation
schemes [21] to computationally determine the suitable
minimizer λ̂ which is attributed to the task network training.
Since determining λ̂ requires predicting the states Xti along
the prediction horizon [0, T ], which can be done using
discrete numerical integration of (4). Alternatively, another
network Φ can be used to predict the evolution of the process
along the horizon [0, T ] for the given input ζ := (x,θ, U)
consisting of the initial value x, process parameters θ and
the control value U . Based on the similar idea for obtaining
Λ, we shall implement a mapping ζ 7→ Φ(ζ) such that
Φ(ζ) = Xt1:tN = [X1, · · · , XtN ]⊤ is the solution to the (4)
for the given data ζ. By parameterizing the map Φ(·;φ) in
terms of φ ∈ Rp, for p ≫ 0, Φ is realized by statistically
optimizing over the dataset Y = {ζk}Mk=1 which is formally
stated as follows:

φ̂M = argmin
φ∈R

1

M

M∑
k=1

N∑
i=1

∥X̂k
ti −Xk

ti∥22

= arg min
φ∈Rp

LM
Φ (φ;Y)

(7)

where, Φ(ζk;φ) = X̂k
t1:tN = [X̂k

ti , · · · , X̂k
tN ]⊤ and

Xk
t1:tN = [Xk

1 , · · · , Xk
tN ]⊤ = I(ζk) with I being the

numerical integrator, such as Euler-Maruyama and Meilstein
[22], of (4). Having obtained a sufficiently robust and
generalized Φ, it can be used as the predictor model
for training the Λ network. This provides the following
advantages: (i) the controller network Λ has only the
black-box view of the process behavior which makes the
network more flexible to cope with process variability. (ii)
It avoids the need for explicitly solving for the process
dynamics thus speeds up the controller training process. (iii)
Provides the option for tuning the process network Φ in
order to adapt to the measured data. It further provides the
flexibility for online and closed-loop tuning of Φ. Based on
this the estimation problem of λ̂ takes the following form

λ̂M = arg min
λ∈Rl

1

M

M∑
k=1

N∑
i=1

∥Ûk
ti∥22 + ∥Φ(· · · , Ûk

tN )− Y k
tN ∥22

= arg min
λ∈Rl

LM
Λ (λ;X) (8)
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Variable min value max value Unit
τ j , j ∈ {1, 2} 10 500 min

x 0 1 µm
ρj , j ∈ {1, 2} 0.01 0.05 g/cm3

cj0, j ∈ {1, 2} 0.00125 0.05 mol/l

kjg , j ∈ {1, 2} 1 15 µm/s

µj
0, j ∈ {1, 2} 0.2 0.8 µm

cjsat, j ∈ {1, 2} 1e-05 1e-05 mol/l

kjb , j ∈ {1, 2} 0 0 1
kjv , j ∈ {1, 2} 1 1 1

TABLE I: Variable interval bounds.
In view of (7) and (8) the composition of the two networks
Λ and Φ can be symbolically represented as Λ(Φ) which
basically represents the learning based robust and adaptive
controller which in short is called as the LARC network.
Next, we shall discuss briefly the dataset generation and
network architecture for the process and the controller
network Φ and Λ respectively.

A. Dataset generation
For training the process network Φ and controller net-

work Λ, two separate datasets are generated. For the Φ
network, a synthetic dataset Y = {ζk}Mk=1 is obtained by
sampling uniformly from fixed intervals spanned by the
minimum and maximum values provided in Table I. More
specifically, each component of the k-th input sample ζk

is obtained in the following way. The initial particle size
distribution F0(x) = [exp(−(x− µ1

0)
2), exp(−(x− µ2

0)
2)]⊤

with µj
0 ∼ Unif([µj

0,min, µ
j
0,max]), initial ion concentration

C0 ∼ Unif([c10,min, c
1
0,max] × [c10,min, c

1
0,max]), process pa-

rameters θ ∼ Unif([θmin,θmax]) and control signal U ∼
Unif([ 1

τ1
min

, 1
τ1
max

]2). Here we have introduced two notational
simplifications. Firstly we have ignored the superscript k
corresponding to the k-th input sample. Secondly, the vari-
ables θmin and θmax are used to denote the minimum and
maximum values, respectively, of the involved components of
the parameter vector θ. Similar convention also applies to the
other variables mentioned above. Furthermore, the variables
Kg , ρ, and U are taken to be time-varying parameters thus
they are further uniformly sampled along the time (predic-
tion) horizon. The choice of time-varying process parameters
thus enables us to construct an adaptive prediction model Φ.

For the Λ network, the dataset X = {ξk}Mk=1 is syn-
thetically generated by sampling uniformly from the fixed
interval spanned by the minimum and maximum values
provided in Table I for the respective variables. Additionally,
the terminal target PSD F̄ := YtN is obtained using the
relation F̄ (x) = [exp(−(x − µ1

T )
2), exp(−(x − µ2

T )
2)]⊤

where µj
T ∼ µj

0 + 0.35(1 − µj
0)Unif([0, 1]) for j ∈ {1, 2}.

The size of both the datasets is given by M which is equal
15K. To ensure unbiased training testing and validation, the
datasets are split into three disjoint sets namely training,
testing, and validation sets as per the splitting ratio 3 : 1 : 1.
This basically provides 9K samples for training and 3K
samples for testing and validation each.

B. DNN Architecture
Since the process dynamics are defined by an SPDE

involving independent variables: time (t) and particle size

(x), for the network Φ, focusing on predictions within finite
time t ∈ [0, T ] and particle sizes x ∈ [0, S], we consider
the joint space DT = [0, T ] × [0, S] to predict PSD Ft on
DT and Ct on [0, T ]. Utilizing this perspective, we employ
a UNet architecture due to its effective multiscale design
ideal for 2D feature identification and localization [23].
UNet’s adaptability to limited datasets aids faster training and
fine-tuning, beneficial for active online learning in closed-
loop operations. Accordingly, the implemented Φ network
is comprised of 27 layers, with input/output dimensions of
50× 57 and 50× 50, totaling 17.3M parameters.

For the control synthesis model Λ, we make use of a
network structure suitable for identifying sequential corre-
lations. This motivates us to use RNN-like architecture and
specifically we make use of Gated Recurrent Units (GRUs)
based network. With fewer gating mechanisms than other
RNNs such as LSTMs, GRUs enable more efficient training
processes with reduced computational load [24]. Further-
more, the streamlined update and reset gates allow selective
memory operations, aiding in better information retention
and mitigating the vanishing/exploding gradient problem.
These factors make GRUs effective in capturing essential
temporal dependencies in sequential data. Accordingly, we
designed the Λ network to be composed of 50 layers with
input and output dimensions being 50 × 16 and 50 × 2
respectively. As a result, the network has in total 1.9K
trainable parameters.

C. Training

For the training of the process and controller networks,
we make use of the finite-sample loss functionals LM

Φ

and LM
Λ respectively, which are as given in (9). These

functionals are motivated by the SP formulation provided in
(7) and (8). Additionally, the loss terms are supplemented
with the terms LM

mode,φ(φ;X) and LM
mode,λ(λ;X) respectively,

in order to facilitate better alignment of the mode of the
estimated PSD F̂t with that of the target PSD F̄t for all t > 0.

LM
Φ (φ) = LM

Φ (φ;Y) + LM
mode,φ(φ;Y) (9)

LM
Λ (λ) = LM

Λ (λ;X) + LM
mode,λ(λ;X) (10)

LM
mode,φ(φ;Y) :=

1

M

M∑
k=1

N∑
i=1

∥mode(F̂ k
ti)−mode(F̄ k

ti)∥22

LM
mode,λ(λ;X) :=

1

M

M∑
k=1

N∑
i=1

max(0,mode(F̂ k
ti)−mode(F̄ k

ti))

Based on this we make use of the Algorithms 1 and 2 to
determine the most likely parameters φ̂ and λ̂ of the process
and controller networks Φ and Λ, respectively that is able
to best explain the observations made available through
the datasets Y and X respectively. Since training Λ(Φ) is
dependent on Φ, the latter is trained first and then used,
while keeping learned value φ̂ fixed, for the training of Λ.
Based on Fig. 1(c) we see that after 100 epochs of training
over a training set of 9000 samples, the process network Φ
is able to fit the training dataset quite well evident in the
loss reduction of order 102. Furthermore, since the reduction
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Fig. 1: Sample outputs of the process network Φ and its training and validation loss.

of the validation loss, obtained over a validation set of
3000 samples, is also in the same order we infer that there
is practically minimal over-fitting. The latter can also be
confirmed by qualitatively inspecting the predictions of Φ
shown in Fig. 1(a) and 1(b). In the former i.e. Fig. 1(a), the
PSDs are depicted as grayscale images with y-axis denoting
time in mins and x-axis denoting particle size in µm.
The plots on the top row correspond to CaCO3 while the
bottom plots correspond to MgCO3. Based on this we can
see that the predicted PSD evolution pattern F̂ matches that
of the reference PSD F̄ obtained by numerical integration.
In Fig. 1(b), the predicted ion-concentrations Ĉ = [ĉ1, ĉ2]⊤

are depicted in solid lines (orange for Ca2+ and blue for
Mg2+) while the reference profile obtained from numerical
integration is denoted in dashed line with similar substance
specific color coding.

Algorithm 1: process neural network X̂t1:tN :=
Φ(Xt0 ,θt0:tN−1

, Ut0:tN−1
)

Data: Dataset Y = {ζk}Mk=1, consist of M samples
ζk = (xk,θk

t0:tN−1
, Uk

t0:tN−1
), batch size

B = 250, [σ1, σ2] = [.1, .1],
θk
ti = (Kk

b,ti
,Kk

g,ti ,K
k
v,ti ,ρ

k
ti , C

k
sat,ti).

input : Initial of neural network parameters φ0 and
Wiener increments Zt0:tN−1

, Σt0:tN−1

1 for k = 1, 2, . . . , Lepoch do
2 X̂k

t1:tN = Φ(ζk;φk−1)
3 for m = 1, 2, . . . , B do
4 for i = 0, 1, . . . , N − 1 do

5 Gti = Kg,ti

(
Cti

Csat
− 1

)1.5

6 M ti =
1
nx

∑nx

0 xxTFti

7 Xti+1 = Xti + [A(Xti , Uti ;θti)Xti +

H(Xt, Ut;θt)]dt+
√
dtΣtiXtiZti

8 if Training then
9 LB(φk−1) as per (7);

10 φk ← argminφ∈Rp L(φ)

return: X̂t1:tN

Based on the plots we see that the predictions and reference
profiles match very well. As a consequence, the growth
coefficients (related via (2)) also matches (not shown plots)
thereby ensuring qualitatively correct evolution profiles of
the predicted PSD. Next, with the Φ model fixed, we
trained the controller network again for 100 epochs to obtain
good loss reduction over the training set (of 9000 samples)
with almost zero over-fitting on the validation set (of 3000
samples) as shown in Fig. 2 (c). Qualitative results of the
synthesized controls can be inferred by inspecting Fig. 2(a)
and 2(b) which show the state of the simulated process after
applying the synthesized control of Λ to two different input
samples from the test set.

Algorithm 2: Controller neural network Ût0:tN−1
:=

Λ(Xt0 ,θt0:tN−1
, Yt1:tN )

Data: Dataset X = {ξk}Mk=1, , consist of M samples
ξk = (xk,θk

t0:tN−1
, Y k

t1:tN ), batch size
B = 250, [σ1, σ2] = [.1, .1],
θk
ti = (Kk

b,ti
,Kk

g,ti ,K
k
v,ti ,ρ

k
ti , C

k
sat,ti).

input : Initial of neural network parameters λ0

1 for k = 1, 2, . . . , Lepoch do
2 Ûk

t0:tN−1
= Λ(ξk;λk−1)

3 X̂k
t1:tN = Φ(xk,θk

t0:tN−1
, Ûk

t0:tN−1
; φ̂)

4 if Training then
5 LB(λk−1) as per (7);
6 λk ← argminλ∈Rl L(λ)

return: Ût0:tN−1

Based on this we see that the single-step control is able to
drive the PSD towards the target and the growth rate has
a decaying profile indicating that the process would slow
down and eventually stop as it reaches the target PSD. Also,
another interesting aspect to point out is the synthesized
control signal Û(t) i.e. [û1

t , û
2
t ]

⊤ is such that its components
ûj
t := 1

τj(t) for j ∈ {1, 2} have non-intersection graphs.
This indicates that the controller is able to select one of
the substances to precipitate faster by keeping its residence
time shorter while making the other particle precipitate
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slower by prescribing a larger residence time. Furthermore,
the controller is correctly able to prioritize CaCO3 over
MgCO3 thereby achieving faster overall throughput of the
required carbonate sizes. The selective precipitation is also
evident from the faster decay in the growth rate G1 of
CaCO3 in comparison to the growth rate G2 of MgCO3.

V. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted to
study the adaptiveness and robustness of our LARC model
Λ(Φ) for the task of controlling the CPBP. Firstly, we
conducted robustness tests for the process network Φ where
we fed the network with noisy parameter θ̃t obtained as a
noisy perturbation of the nominal value θt. More specifically,
θ̃t = θt(1+ δz) for Rd ∋ z ∼ N (0, 1), with d being the di-
mension of θt. Letting FT = [f1

T , f
2
T ]

⊤ denote the reference
PSD obtained via numerical integration of (4) (via I) with
θt as the parameter and letting F̂T (δ) = [f̂1

T (δ), f̂
2
T (δ)]

⊤

denote the prediction of Φ for delta perturbed θ, we denote
the mean absolute error (MAE) EΦ(δ) = [E1

Φ(δ), E
2
Φ(δ)]

⊤,
with Ej

Φ(δ) := 1
B

∑B
k=1 |f̄

j,k
T − f̂ j,k

T (δ)|, for j ∈ {1, 2},
δ ≥ 0 and batch size B = 100. Based on this the plot of
MAE EΦ for increasing values of δ is as shown in Fig. 4(a).
From this, we see that the trained model shows sub-linear
increase in error and the error for large perturbation of order
10 is still within tolerable region of .05. Also, the variation in
the error across different batches, indicated by the confidence
bands shown as shaded regions around the solid line, is
fairly narrow. Altogether, we can infer that the Φ network is
robust to uncertain process dynamics and is able to predict
the behavior of the process with good order of accuracy.
Furthermore, since the Φ has a broad input (parameter) range
(refer Table I) it can provide stable predictions even for large
growth parameters G which can usually be problematic due
to the for classical numerical integration due to the numerical
instability of discrete advection operator [25], [26]. These
two factors combined with the generalizability property of a
DNN renders the Φ model adaptable to the varying as well
as uncertain dynamics of the process. Next we performed
a similar robustness experiment with the controller network
Λ where we sequentially fed the controller with perturbed
feedback X̃t = [F̃t, C̃t] obtained from a numerically simu-
lated process with increasing intensity of the process noise
parameter σj

t = σ, j ∈ {1, 2}. This corresponds to a closed-
loop simulation with a noisy simulated process model which
we ran for 200 time steps with sampling time ts = .1, which
in total corresponds to T = 20mins of sequential batch
control. Based on this we computed the MAE EΛ(σ) :=
[E1

Λ(σ), E
2
Λ(σ)]

⊤ with Ej
Λ(σ) :=

∑B
k=1 |f̂

j,k
T (σ) − f̄ j,k

T |,
for j ∈ {1, 2} of the final controlled PSD F̂T (σ) from the
prescribed target PSD F̄T on the test set with batch size
B = 100. The errors so obtained for different values of σ
are as shown in Fig. 4(b). The error plot indicates that the
controller is able to drive the process toward the prescribed
target PSD even when being operated under increasing
intensity of noisy feedback. Even with higher than 5 fold
increase in the noise intensity, the MAE EΛ(σ) was less than

the tolerable threshold of .07. Furthermore, the variation in
error across different batches, indicated by the confidence
bands shown as shaded regions around the solid line, is
also fairly narrow. These observations indicate the robustness
of the controller to external disturbances. Altogether, from
Fig. 4(a),(b) we can infer that Λ(Φ) is an adaptive and robust
controller. Following this we applied it for the control of
simulated precipitation process with default noise intensity of
σ = diag([.1, .1]⊤) for a fixed initial and target PSD F0 and
FT respectively. We performed sequential batch operations
for 100 steps with sampling time ts = .1 which corresponds
to a total time of T = 30mins. The results of the simulation
are as shown in Fig. 3, which shows that Λ(Φ) was able to
achieve the required PSD in roughly 30mins.

VI. CONCLUSIONS

In this work, we have introduced a novel learning-based
adaptive and robust controller (LARC) Λ(Φ) for the task
of controlling the CPBP in a selective manner. By the
use of deep neural network architectures, including UNet
for predicting the particle size distribution and GRU for
generating control sequences, we were able to obtain fairly
robust and adaptive controller. The numerical experiments
indicate that Φ model not only provides accurate predictions
of both particle size distribution and ion concentration but is
also adaptive and robust to varying process parameters, thus
demonstrating its potential for effective prediction of the real
process dynamics. The ability of the controller Λ(Φ) to drive
the system from an initial distribution to a predefined target,
even in presence of moderate amount of noise, highlights its
practical efficacy. Furthermore, the decoupled process model
and control signals enable selective precipitation, and the use
of Φ as the prediction model facilitates active online learning
based on real data. Based on these, some of the planned work
for the near future involves (i) incorporating measured data
in the training, (ii) adapting the process model with a more
realistic coupling involving particle interactions conditioned
on different operating conditions such as pH, temperature,
and pressure and finally (iii) to also incorporate, the afore-
mentioned, operational variables as control variables.

REFERENCES

[1] W. Seifritz, “CO2 disposal by means of silicates,” Nature, vol. 345,
no. 6275, pp. 486–486, jun 1990.

[2] F. Goff and K. S. Lackner, “Carbon Dioxide Sequestering Using
Ultramafic Rocks,” Environmental Geosciences, vol. 5, no. 3, pp. 89–
102, sep 1998.

[3] A. A. Olajire, “A review of mineral carbonation technology in seques-
tration of CO2,” Journal of Petroleum Science and Engineering, vol.
109, pp. 364–392, sep 2013.

[4] E. R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, “Carbon capture and
storage using alkaline industrial wastes,” Progress in Energy and
Combustion Science, vol. 38, no. 2, pp. 302–320, apr 2012.

[5] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M. M. Maroto-
Valer, “A review of mineral carbonation technologies to sequester CO
2,” Chem. Soc. Rev., vol. 43, no. 23, pp. 8049–8080, 2014.

[6] P. D. Christofides, Nonlinear and Robust Control of PDE Systems,
ser. Systems & Control: Foundations & Applications. Boston, MA:
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