
Estimating Daily Start Times of Periodic Traffic Light Plans from
Traffic Trajectories

Ori Rottenstreich, Tom Kalvari, Nitzan Tur, Eliav Buchnik, Shai Ferster, Dan Karliner, Omer Litov,
Danny Veikherman, Avishai Zagoury, Jack Haddad, Dotan Emanuel and Avinatan Hassidim

Google Research, Israel

Abstract— In recent years, the wealth of available vehicle
location data from connected vehicles, cell phones, and nav-
igation systems has been introduced. This data can be used
to improve the existing transportation network in various
ways. Among the most promising approaches is traffic light
optimization. Traffic light optimization has the potential to
reduce traffic congestion, air pollution and GHG emissions.
The first step in such optimization is the understanding of
the existing traffic light plans. Such plans are periodic but,
in practice, often start every day at arbitrary times, making
it hard to align traffic trajectories from various days toward
the analysis of the plan. We provide an estimation model for
estimating the daily start time of periodic plans of traffic lights.
The study is inspired by real-world data provided, for instance,
by navigation applications. We analyze the accuracy of such
computations as a function of the characteristics of the sampled
traffic and the length of the evaluated time period.

I. INTRODUCTION

Road transportation is responsible for over 10% of the
world Greenhouse gases (GHGs) [1] and in several countries
a person spends on average over half an hour per day in
traffic delays. Studies showed that emissions and travel time
can be reduced by a careful design of traffic light plans that
match traffic trends. Designing efficient traffic light plans
requires inputs related to the intersection where the traffic
light is located and its traffic [2], [3], [4]. These include
intersection properties such as the structure of the intersec-
tion, the allowed movements crossing the intersection, the
periodicity of traffic light plans in the intersection and the
currently operating plans.

Such input can be learned from traffic data expressed
as vehicle trajectories [5], [6], [7]. A trajectory is a series
of pairs of timestamps and GPS locations of vehicles. A
potential common source for such trajectories is navigation
applications, often adopted by a subset of the vehicles and
accordingly represent a sampled part of the traffic.

The Google Green Light project [8] helps to reduce
emissions in cities by analyzing Google Maps driving trends
to build intelligent recommendations that optimize the timing
and coordination of traffic lights. The project is already
deployed in over 12 cities such as Rio de Janeiro, Seat-
tle, Bangalore, Hamburg, Haifa, Jakarta and Budapest. It
currently affects more than 25 million drivers every month.
Initial deployments at intersections show a reduction of up
to 30% in stopping and 10% in GHG emissions.

Authors contributed equally to this work.

As traffic light plans do not change frequently, analyzing
them based on several-day data allows higher accuracy.
While this is challenging since a periodic plan often starts
at arbitrary times each day, computing the daily start times
allows aligning trajectories from different days that match
identical parts of the plan to better estimate the plan.

Contributions. In this paper, we study the estimation
based on traffic trajectories of Day Shifts - the times a
periodic plan of a traffic light starts on each day. We present a
graph-based method with three steps to compute them based
on trajectories and analyze the accuracy of the computations
based on the amount of available information.

Terminology. We detail the basic terminology of this
study.

Movement - A movement refers to intersection traffic
sharing the same pair of incoming and outgoing directions.

Traffic plan - An intersection is associated with a periodic
traffic plan. In each cycle, the plan has a sequence of
various phases, each allowing traffic of some movements.
Two movements that cross each other cannot be allowed
at the same phase. While there can be several traffic plans
during the day, we refer to a period of hours with a single
plan that repeats itself. The length of the periodic plan is
called the cycle time.

Crossing time - The time a vehicle enters an intersection
(crossing a stop line for its movement). The time can be
computed from the vehicle trajectories.

time

plan start

12:00:00

Day 1, shift s1 = 0

time

plan start

12:00:50
Day 2, shift s2 = 50

0 20 40 60 80 100 120 140 160 180 200 220 240

time

plan start

12:00:20
Day 3, shift s3 = 20

synchronization that lasts random
time si on day i ∈ [1, 3]

Fig. 1. Day Shifts Estimation: The same traffic plan starts every day at
a different time following a synchronization process that lasts every time
some random time (shown in black). The plan is an ordered sequence of
three phases (shown in blue, orange and pink). On day i ∈ [1, 3] the plan
starts at time si and repeats itself every cycle time of C = 90 seconds.
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TABLE I
SUMMARY OF THE MAIN NOTATIONS

Symbol Meaning
C plan cycle time
si plan time shift for day i
G graph representing days and their mutual shift differences
M bound on the maximal error of mutual shift differences
m number of days

II. THE DAY SHIFTS ESTIMATION PROBLEM

Consider a signalized intersection with a periodic traffic
light plan, that repeats itself based on its cycle time. Typ-
ically, the cycle time is in the range of 1-4 minutes. Over
the days, the plan starts at different times following a short
daily synchronization process of the traffic light that takes
some random time every day. To understand the phases of a
plan and analyze its performance, it is important to align the
traffic samples collected between days based on the phases
of the plan they match. Computing the daily start times of
the plans is crucial to allow such an alignment. We refer to
the differences in the time a plan starts each day as daily shift
values. This paper studies how shift values can be estimated
based on traffic trajectories.

Problem Statement. Consider a plan that applies for
several days with a known cycle time C. For vehicles
in a single movement, modeling crossing times (the times
vehicles cross their stop line) on day i as independent random
variables that distribute modulo C as si +λ, where si is the
shift of day i and λ ∼ Λ is an unknown but fixed crossing
time distribution Λ. We wish to estimate all si. The number
of crossing times in each day is distributed like some Poisson
distribution, independent between different days.

Example 1. Consider a plan with a cycle time of C = 90
seconds that operates in three days. On day 1 the plan
starts at 12:00:00 (namely at noon). The plan repeats itself
every C = 90 seconds and starts again at times 12:01:30,
12:03:00, etc. On days 2 and 3 the plan starts at 12:00:50
and 12:00:20 (respectively), and repeats every C = 90
seconds. These start times translate to day shift values of
0, 50, 20 seconds respectively. Fig. 1 illustrates the plan for
the three days with different colors for various parts of the
plan.

We aim to compute the shift values (s1, s2, s3) =
(0, 50, 20).

Table I summarizes the main notations of the study.

III. THE PROPOSED THREE-STEP APPROACH

A. Overview of the Approach.

We propose a three-step approach to detect the daily shift
values. The intuition behind the approach is as follows.
First, we correlate distributions of pairs of days to estimate
modular differences. We then use small cycles in the mod-
ular difference graph to estimate non-modular differences.
Finally, we use non-modular differences to estimate the
individual day shifts by solving a least-squares problem.

We suggest the three following steps.

Day 1

12:00:00
s1 = −1 (0)

Day 2

12:00:50
s2 = 50 (50)

Day 3

12:00:20
s3 = 21 (20)

estimated (correct)

Step I: estimate (si − sj) mod C
Step II: estimate si − sj
Step III: estimate day shifts si

(s2 − s1) mod C ≈ 47

(s2 − s1) ≈ 47

(s3 − s2) mod C ≈ 57

(s3 − s2) ≈ −33

(s3 − s1) mod C ≈ 26

(s3 − s1) ≈ 26

Fig. 2. Illustration of Steps I-III for estimating day shift values. There are
three days with a cycle time of C = 90 seconds of the periodic plan. Each
node represents a day and indicates the (unknown) start time of the plan.

• Step I - Estimate the mutual modular difference of shift
values between pairs of days modulo the cycle time,
up to some additive error. The output of this step is
a weighted graph G = (V,E) with nodes representing
days. The weight Dij of a directed edge e = (i, j)
between two days i, j indicates the estimated mutual
shift from day j to day i (i.e. si−sj) modulo the cycle
time C. The graph is not necessarily complete based on
the accuracy of estimations.

• Step II - Use estimates of modular differences (si −
sj) modulo C to estimate non-modular differences si−
sj .

• Step III - Use all estimates of differences si − sj to
estimate the values of the day shifts si for all days in
V .

In some cases, the result of Step I could be used directly
to estimate the day shift values by arbitrarily setting the
shift of one day and considering its mutual shift from others.
Steps II and III are important as the graph is not necessarily
complete. Moreover, improved accuracy can be achieved
with the additional steps that take advantage of the complete
information from Step I to overcome the inherent potential
error in estimating the mutual modular difference of shift
values.

The following example illustrates the steps.

Example 2. To illustrate the approach, we refer again to
shift day values from Example 1 and Fig. 1 where the cycle
time is C = 90 and we aim to compute shift values such
as (s1, s2, s3) = (0, 50, 20). We illustrate steps I-III in
Fig. 2. First, in Step I, we use traffic information to estimate
differences in pairs of shift values.

Assume that shift values between pairs of days computed
at Step I yield approximate values of (s2−s1) mod 90 ≈ 47,
(s3 − s1) mod 90 ≈ 26, and (s3 − s2) mod 90 ≈ 57.

In Step II, we wish to find the approximate values of the
differences (without the modular restriction), so we would
get s2 − s1 ≈ 47, s3 − s1 ≈ 26 and s3 − s2 ≈ −33.

In step III, we use the approximate differences without
modulo to estimate the values of the day shifts, deriving for
instance (s1, s2, s3) ≈ (−1, 50, 21).
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Next, we detail the three steps of the proposed approach.

B. Step I - estimating mutual modular differences in day
shifts

The first step in our algorithm is to estimate the modular
differences of day shifts, i.e. estimating (si− sj) mod C for
all i, j. The core idea is that for estimating (si−sj) mod C,
we correlate crossing time distributions in days i and j mod
C, to find a shift between the days which best aligns them.

Since Λ is in practice a continuous (and relatively well-
behaved) distribution, it might be best to use a continuous
similarity test (such as the Kolmogorov-Smirnov test) [9].

To derive provable bounds, we view the distribution Λ in a
discrete setting. We partition the range [0, C) into B bins of
equal size. The bins correspond to [0, CB ), [CB ,

2C
B ), ..., and

we index them as bins number 0, 1, ..., B−1 respectively. We
approximate the day shifts as multiples of C

B
1. By making

this translation, we may view Λ as a distribution on the
bins, i.e. Λ0,Λ1, ...,ΛB−1 where Λi := Pr

λ∼Λ
(λ = i), and

we approximate si as integral translations ŝi :=
[
B
C · si

]
on

the bins, i.e. assume that on day i, each sample distributes
like (ŝi + λ) mod B for λ ∼ Λ.

We wish to use sampled crossing times of two days to
estimate their modular difference. For this estimation, we
provide a method and analyze its correctness. For each
possible difference, we consider the inner product of the
sample distributions of the two days. Say that for each bin t,
on day i we have Xt crossing times at this bin and on day j
we have Yt crossing times at this bin (we think of the bins
as modular, so Xt+B := Xt, Yt+B := Yt). We consider the
following score of a potential modular difference D:

ScoreD :=

B−1∑
t=0

XtYt+D. (1)

Let µD := E [ScoreD] be the mean score. First, we can
see that it is maximal when D is the correct offset ŝj − ŝi:

Lemma 1. The maximum maxD (µD) is achieved for D =
ŝj − ŝi, and it is unique if Λ has no smaller period than B.

We prove this lemma in Appendix A. To generate a
confidence interval for the correct offset, we must also
analyze the tail distribution of ScoreD. Each such score is
an inner product between two vectors of Poisson variables.
We use the following lemma to bound its tail distribution.

Lemma 2. Let B be a positive integer, let ε be a positive
real number, and let θ0, θ1, ..., θB−1 and ν0, ν1, ..., νB−1 be
nonnegative real numbers. Take the following independent
random variables:

Xi ∼ Pois (θi) , Yi ∼ Pois (νi) (∀i ∈ {0, ..., B − 1}) (2)

Define the following random variable: Z :=∑B−1
i=0 (Xi · Yi). Its mean is µ :=

∑B−1
i=0 (θi · νi). Denote

1We can see C
B

as a minimal time resolution such as seconds. Such a
minimal resolution implies an error with an order of C

B
, which we do not

discuss.

L := 2 log
(

2B
ε

)
. For any positive t, it holds that

Pr (|Z − µ| ≥ t) < ε+ e
− 2t2

5BL4+5L(
∑
i θ

3
i
+

∑
i ν

3
i ) . (3)

The proof for this lemma is given in Appendix B. We
may bound θt, νt with high probability using the results
of the Poisson random variables Xi, Yi, and we may use
that to gain an upper bound on

(∑
i θ

3
i +

∑
i ν

3
i

)
(with high

probability). Since µD distributes like Z in the lemma, we
may use it to bound the probability that some t maximizes µ
(so by Lemma 1 is the correct difference), for any distribution
Λ. We join these possible t-s into a confidence interval
for the difference. Note that the distribution Λ affects the
distribution of the size of the confidence interval. If Λ is
uniform, all scores distribute identically, so the confidence
interval typically contains the entire range [0, B). On the
other extreme, if Λ were supported only on one value, then
we would need very few samples for the confidence interval
to contain only the correct difference.

For every pair of days, we generate some estimate for
their modular day shift difference, with a confidence interval
attached. There is redundancy in the differences between all
pairs of day shifts, so we will only use confidence intervals
under some threshold size for estimating individual day
shifts. We discuss this tradeoff more in Subsection III-E.

C. Step II - from modular to non-modular differences

In this algorithm step, we use the modular difference
estimates of day shift differences si− sj to derive estimates
for the non-modular differences. To do so, we assume that the
modular estimates computed in Step I have an error smaller
than M (which depends on the distribution Λ and the number
of sample points). We can write this as

si − sj = Di,j + ki,j · C − βi,j , (4)

where Di,j are the modular estimates, ki,j are integral, and
βi,j satisfy |βi,j | < M . Denote Dj,i = −Di,j , kj,i = −ki,j
and βj,i = −βi,j .

To translate modular difference estimates to non-modular
ones, we must compute the ki,j values.

Note a degree of freedom in these values: For any day i
and integer a, if we increase si by a · C and decrease ki,j
by a for all j (and maintain the other values), all equations
hold.

To find the ki,j values, we leverage cycles in G. The cycle
length can be bounded based on the graph diameter.

Definition 1 (Graph diameter). For a graph G = (V,E),
define the distance between two vertices as the number of
edges in a shortest path between them. The graph diameter
is the maximal distance between any pair of vertices.

Assumption 1 Our algorithm works under the assumption
that the diameter of the graph G (indicating the availability
of modular differences) is at most C

4M −
1
2 .

The algorithm works as follows. First, take a BFS tree F
around some node v. For any node, its distance to v in the
tree is equal to its distance to v in the graph, which is at
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most the graph diameter. Leveraging the discussed degree of
freedom in the values of the day shifts si, we assume without
loss of generality that all ki,j of edges of F are 0. We now
need to determine ki,j for edges of G not in F . For each
such edge between i, j, close it to a cycle using the unique
path between them on the tree, say i = u0–u1–...–ur = j,
and sum Equation (4) over that cycle. Denote ur+1 := i, we
derive
r∑
p=0

(
sup − sup+1

)
=

r∑
p=0

(
Dup,up+1 + kup,up+1 · C − βup,up+1

)
.

The left-hand side is 0 as a sum of differences over a cycle.
On the right-hand side all kup,up+1

are 0 except for kj,i,
so 0 =

∑r
p=0Dup,up+1

−
∑r
p=0 βup,up+1

+ kj,i · C and
accordingly

ki,j =
1

C

(
r∑
p=0

Dup,up+1 −
r∑
p=0

βup,up+1

)
. (5)

The value r, as the path length over the tree F between two
nodes in G, equals at most twice the graph diameter, namely
r ≤ C

2M − 1. Accordingly, the cycle length r + 1 is at most
C

2M .
The sum

∑r
i=0 βup,up+1 is smaller in absolute value than

(r + 1) ·M . The last inequalities imply together that

1

C
· |

r∑
i=0

βup,up+1
| < 1

C
· (r + 1) ·M ≤ 1

C
· C

2M
·M =

1

2
.

As the left-hand side in Equation 5 has an integer value,
we can derive all ki,j values from Di,j values as ki,j =[

1
C ·
∑r
i=0Dup,up+1

]
where [] denotes the rounding opera-

tion.

Example 3. Fig. 3(a) shows an example graph G with 6
nodes u1, u2, . . . , u6 that refer to 6 days. The graph has a
diameter of 2. Fig. 3(b) shows in blue a potential BFS tree F
with 5 edges. Accordingly, we assume that the five ki,j values
for the tree edges equal 0, namely k1,2 = k2,3 = k4,5 =
k1,5 = k1,6. The values for other edges can be computed
based on cycles in the tree connecting them. For instance,
based on the cycle u4–u5–u1–u2–u3–u4, we can compute
the value of k3,4. The length of such a path is at most r+ 1
such that r is at most the value of the graph diameter.

D. Step III - using day shift differences to determine day
shifts

Step III uses the estimates for differences of day shifts
computed at Step II to estimate the day shifts themselves. We
explain the proposed approach for this estimation. Denote

di,j := Di,j + ki,j · C.

For each edge (i, j), we have that si − sj = di,j − βi,j ,
where di,j is known and βi,j is small. We can find a
solution that best approximates the differences (in terms of
least mean squared error) by solving a simple least-squares
problem. We know that βi,j are the estimation error we got
in Subsection III-B. By assuming asymptotic normality of

u3

u4u5

u6

u1 u2

(a) a graph G

u3

u4u5

u6

u1 u2

(b) a BFS tree F in G

Fig. 3. Example of a graph G with 6 nodes and diameter 2 (in (a)). A
node refers to a day and an edge to the availability of estimated shift value
differences. A BFS tree F in G with 5 edges is shown in blue in (b).

the estimators (as defined in [10]) and given enough data,
βi,j are roughly normal.

Denote by A a matrix with a column for each node and a
row for each edge, where in each row there is a value 1 on
the column matching one of the edge endpoints and a value
−1 on the column for the other edge endpoint. In this row,
the value is 0 on all other columns. This gives us As = d+β
where s, d, β indicate vectors of the corresponding values.

Consider a solution to the instance of the least-squares
problem, namely a vector s′ that minimizes As′ − d. The
vector s′ is our estimate for s. We wish to investigate
the error of this estimate, |s − s′|. We must first mention
another degree of freedom - if we add a constant to all si,
the differences do not change. This means that we can, at
most, hope to estimate the day shifts up to a constant. This
expresses a degree of freedom in the problem formulation
- we may denote any point in the traffic light plan as the
”start” of the plan, shifting all si by a constant (modulo C).
To resolve this degree of freedom, we add a constraint that∑
i si = 0, which uniquely determines the day shifts.
Denote by U := RV0 the vector space of all vectors indexed

by vertices which sum up to zero, and W := RE the vector
space of all vectors indexed by edges. We think of A as a
linear transformation from U to W .

Denote by m the number of days for which shift values
are estimated that m is the number of vertices in G. We show
that up to a constant shift, the solution for the least-squares
instance estimates the day shifts up to a small error when
each edge in the graph appears with at least some probability
p that is not very small. To do so, we rely on the following
assumption:
Assumption 2 An edge in the graph G of the differences
of day shift values (for m days) appears with at least some
probability p such that p > H · log(m)

m , for a constant H to
be expressed later.

We express the accuracy of the solution to the least-squares
problem as a solution for the shift values based on the
following. 2

2In this analysis, we assume for simplicity that estimated shift differences
are available with some probability independently for the various pairs of
days. In practice, this might not be fully accurate due to some days with
unusual traffic patterns. Note that the result also holds if the probability
for the availability of estimations varies among pairs while referring to the
minimal probability over all pairs.
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Theorem 1. For any positive real ε > 0 there exists a real
constant H > 0 and integer m0 > 0, such that for any
positive integer m with m > m0 and real p ∈ [0, 1] which
satisfies Assumption 2, the following holds. For a random
Erdös-Rényi graph G = G(m, p) with a vertex set V , for
any real σ > 0 and any assignment of values to its vertices
s : V → R with

∑
v∈V sv = 0, if we take ”noisy differences”

along the edges

di,j := si − sj + βi,j

where βi,j are i.i.d. normal random variables with mean 0
and standard deviation σ, taking s′ to be the ordinary-least-
squares solution to the above problem gives an approxima-
tion to s with root mean squared error at most

(H · σ)/(m · p) (6)

with probability at least 1− ε.

The proof of Theorem 1 can be found in Appendix C.

E. Explicit Parameter Dependence
In Subsection III-B, we had a configurable tradeoff be-

tween the error of the day shift differences and the number
of the differences that we are able to produce. Are fewer,
more accurate day shifts better? Or do we prefer more, even
though they are off by more? The analysis of Step II gives
us an explicit dependence that we must reach in order for the
algorithm to work - particularly Assumption 1. Equation (6)
in Step III determines how accurate the final result will be.

Note that in Subsection III-D we claimed the ”differences
have a normal noise with standard deviation σ”, and in
Subsection III-C we needed to assume a ”guaranteed bound
M on difference error”. We may use M := 2

√
log(m)σ,

to get a global bound with high probability. Such a value
of the bound on the difference error is satisfied with high
probability following the distribution with standard deviation
σ based on Hoeffding’s inequality.

To translate the diameter in Assumption 1 to a demand
on p, we rely on a result by Klee and Larman in [11]
on the diameter of random graphs; For a random graph
G(m, p), the diameter almost surely satisfies diameter(G) =⌊

1

1+
log(p)
log(m)

+ o(1)

⌋
.

To satisfy Assumption 1, we need

diameter(G) +
1

2
≤ C

4M
=

C

8
√

log(m)σ

8
√

log(m)σ

 1

1 + log(p)
log(m)

+ o(1)

+
1

2

 ≤ C, (7)

which gives us an explicit dependence between p and σ. Note
that for the case where the diameter is constant, it holds that
p > m−1+ε and Assumption 2 is necessarily satisfied.

Given that these assumptions hold, we know from Equa-
tion (6) that the final root mean squared error is at most
σ√
mp . This means that in Step I when we decide on the

tradeoff between σ and p, we want to minimize σ√
mp under

the assumption that the Inequality (7) holds.
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Fig. 4. Accuracy in mutual difference for two days - Impact of the sampling
probability for data with various duration values.

IV. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to illustrate the
proposed approach and examine its accuracy while focusing
on the mutual difference for pairs of days. We examine the
accuracy of estimating the modular difference of the day
shifts of two days. This task was described in detail in
Section III-B under the name of estimating mutual modular
differences.

We refer to a plan with a cycle time of C = 90 seconds
with three phases, similar to the plan illustrated in Fig. 1. Let
(s1, s2) be the daily shift values for the two days. We aim to
find (s2−s1) mod 90, the modular difference of the day shift
of the two days. We refer to the estimation based on the first
of the three phases. Recall that the estimation method finds
the modular difference as the difference D that maximizes
the score ScoreD from Eq. 1.

The range [0, C) is partitioned to B = 30 bins, each of
3 seconds: [0, CB ), [CB ,

2C
B ), . . .. Assume that the first phase

lasts 30 seconds among the C = 90 seconds in each cycle
and thus refers to 10 bins. The distribution Λ for each bin
implies some probability for a vehicle’s arrival within the
bin’s time. As the bin refers to a relatively short period, we
assume the number of arrivals in the bin is at most one. We
refer to that probability as the sampling probability.

Fig. 4 shows the probability of computing the exact mutual
difference vs. the sampling probability for various duration
values of the data. The sampling probability has a significant
impact on the accuracy probability. For instance, with data
of the duration of a single cycle (C = 90 seconds), the
accuracy probability is 0.021, 0.131 and 0.604 for sampling
probabilities of 0.1, 0.5 and 0.9, respectively. Increasing the
duration of the data allows higher accuracy. For instance, for
the mentioned sampling probability of 0.9, when the duration
is set to 2 cycles (C = 90 seconds), the accuracy increases
to 0.842. Similarly, with the same sampling probability of
0.9, for longer data periods of 3 and 4 cycles, the accuracy
probabilities reach even higher values of 0.940 and 0.979.

We also consider scenarios of low sampling probability.
We examine the duration of the data required for achieving
some required accuracy probability in estimating the modular
difference of the day shift or alternatively to satisfy bounds
on the error of the estimated mutual difference. Fig. 5 shows
the minimal duration in units of cycles (each of C =
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Fig. 5. Accuracy in mutual difference for two days - Data minimal duration
for low sampling probabilities and various accuracy probabilities.
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Fig. 6. Accuracy in mutual difference for two days - Data minimal duration
for 80% success in having an estimation error within the particular error
bound.

90 seconds) for sampling probabilities within [0.05, 0.40].
For space limits, duration values of more than 250 cycles
(roughly 6.25 hours) are not shown for low sampling prob-
abilities and high accuracy probabilities. As we can see, for
an accuracy probability of 50% (blue curve), an average
duration of 150 cycles (3.75 hours) is required for a sampling
probability of 0.20. The average required duration reduces to
only 40 cycles (a single hour) when the sampling probability
is 0.30.

Similarly, Fig. 6 shows the duration of the data required
to estimate (with an accuracy probability of 80%) the correct
mutual shift with some bounded error. For computing a shift
with a distance of at most 3 seconds from the correct value,
a duration of 80 cycles (2 hours) is necessary when the
sampling probability is 0.15. The duration drops to 30 cycles
(45 minutes) for a sampling probability of 0.25. Allowing
inaccuracies in estimating the mutual shift, such as bounded
by 9 or 15 seconds allows low minimal duration values. In
such cases, the duration is no larger than 20 cycles when the
sampling probability is 0.15 or larger.

V. CONCLUSIONS

This paper studies a basic estimation problem of the daily
shift values in the start times of periodic plans in traffic lights.
For the problem, we showed a graph-based approach that
includes three steps: In the first step we estimate mutual
modular differences of day shifts modulo the cycle time. In
the second step, we explain how to derive the global mutual

differences among day shifts. In the third and last step, we
compute the shift value for each of the days. We studied the
impact of the number of days and traffic arrival distributions
on the accuracy of the estimations. As a future work, we
aim to extend this study towards the estimation of additional
features that refer to the traffic light plans such as the exact
start and end time in each of the phases of the periodic plan.
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APPENDIX

A. Proof of Lemma 1

Proof: We assumed that the number of samples in each
day distributes like a Poisson random variable, independently
between different days. Say that on each day p, the expected
number of samples on day p is γp. This means that the
number of crossing times at bucket t on day p distributes
like a Poisson random variable with expectation γpΛt+sp
(where the sum is taken modulo B). Recall that we denoted
the number of crossing times at bucket t on day i as Xt and
the number of crossing times at bucket t on day j as Yt. This
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means that we may compute the expected score directly:

µD = E [ScoreD] = E

[
B−1∑
t=0

XtYt+D

]

=

B−1∑
t=0

E [Xt]E [Yt+D] =

B−1∑
t=0

γiΛt+ŝiγjΛt+ŝj+D

= γiγj

B−1∑
t=0

Λt+ŝiΛt+ŝj+D.

By the Cauchy–Schwarz inequality the above equals at most

γiγj

√√√√B−1∑
t=0

Λ2
t+ŝi

√√√√B−1∑
t=0

Λ2
t+ŝj+D

= γiγj

B−1∑
t=0

Λ2
t .

Furthermore, equality is attained exactly when the two series
are proportional, i.e. there is some α such that Λt+si =
αΛt+sj+D for all t. However, the sum of the Λ-values is 1
(on both sides), so α must be 1. This means that equality is
achieved exactly when

Λt+ŝi = Λt+ŝj+D ∀t ∈ {0, 1, ..., B − 1}.

This holds when D = ŝi− ŝj , therefore it maximizes µD, as
we wished to show. Moreover, if µD achieves this equality
for any other value of D, it must hold that

Λt = Λt+ŝj+D−ŝi ∀t ∈ {0, 1, ..., B − 1}. (8)

Since ŝj +D − ŝi 6= 0 mod B, it means that Λ is periodic.

B. Proof of Lemma 2

The correctness of the lemma follows as a result of
common statistical inequalities, but it takes quite a bit of
computation to see that. We first need to prove two other
lemmas:

Lemma .1. For any real θ, ε with θ ≥ 0 and ε > 0, for a
random variable X ∼ Pois(θ), it holds that

Pr

(
|X − θ| >

√
2θ log

(
1

ε

)
+ 2 log

(
1

ε

))
< ε.

Lemma .2. For any real θ1, θ2, ε with θ1, θ2 ≥ 0 and ε > 0,
for random variables X1 ∼ Pois(θ1) and X2 ∼ Pois(θ2), if
we denote

L := 2 log

(
2

ε

)
,

it holds that

Pr
(
|X1X2 − θ1θ2| ≥ 3

√
L
(
θ

3
2
1 + θ

3
2
2

)
+ 3L2

)
< ε.

We now present the proofs of all three lemmas.
Proof: [Proof of Lemma .1] We use the following

standard tail inequality for Poisson variable, which holds for
all positive α:

Pr (|X − θ| > α) < e−
α2

2(θ+α) . (9)

Let α :=
√

2θ log
(

1
ε

)
+ 2 log

(
1
ε

)
.

It holds that

α

(
α− 2 log

(
1

ε

))
>

(
α− 2 log

(
1

ε

))2

=

√
2θ log

(
1

ε

)2

= 2θ log

(
1

ε

)
α2 > 2θ log

(
1

ε

)
+ 2α log

(
1

ε

)
α2

2(α+ θ)
> log

(
1

ε

)
.

Plugging that into Equation (9), we derive

Pr (|X − θ| > α) < e−
α2

2(θ+α) < e− log( 1
ε ) = ε,

as needed.
Proof: [Proof of Lemma .2] For i ∈ {1, 2}, denote εi :=√

θL+L. From Lemma .1, we know that for each i ∈ {1, 2},
with probability greater than 1− ε

2 , it holds that |Xi− θi| <
εi. This means that both inequalities hold with probability
greater than 1− ε. In that case,

|X1X2 − θ1θ2|
= |θ1 (X2 − θ2) + θ2 (X1 − θ1) + (X1 − θ1) (X2 − θ2) |
≤ θ1ε2 + θ2ε1 + ε1ε2.

We bound this quantity using the inequality of arithmetic and
geometric means:

θ1ε2 + θ2ε1 + ε1ε2

= θ1

√
L
(√

θ2 +
√
L
)

+ θ2

√
L
(√

θ1 +
√
L
)

+ L
(√

θ1 +
√
L
)(√

θ2 +
√
L
)

=
√
L
(
θ1

√
θ2 + θ2

√
θ1

)
+ L (θ1 + θ2)

+ L(
√
θ1θ2 +

√
θ1L+

√
θ2L+ L)

≤
√
L
(
θ

3
2
1 + θ

3
2
2

)
+ L (θ1 + θ2) +

L · θ1 + θ2 + θ1 + L+ θ2 + L+ L

2

=
√
L
(
θ

3
2
1 + θ

3
2
2

)
+ 2Lθ1 + 2Lθ2 +

3

2
L2. (10)

We can leverage another inequality of arithmetic means,
using the fact that

Lθi =
√
L
(
L

3
2 θ

3
2
i θ

3
2
i

) 1
3

≤
√
L
L

3
2 + θ

3
2
i + θ

3
2
i

3

=
L

3
+

2
√
Lθ

3
2
i

3
.

(11)

Plugging that into Equation (10), we get that with probability
greater than 1− ε, we have as needed the following

|X1X2 − θ1θ2|

<
√
L
(
θ

3
2
1 + θ

3
2
2

)
+

4
√
Lθ

3
2
i

3
+

4
√
Lθ

3
2
i

3
+

4L

3
+

3

2
L2

< 3
√
L
(
θ

3
2
1 + θ

3
2
2

)
+ 3L2.
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We are now ready to present the proof for Lemma 2
based on Lemma .1 and Lemma .2. Proof: [Proof of
Lemma 2] Use Lemma .2 on all pairs Xi, Yi, with ε′ :=
ε
B . We have L = 2 log

(
2B
ε

)
= 2 log

(
1
ε′

)
and Mi :=

3
√
L
(
θ

3
2
i + ν

3
2
i

)
+ 3L2. By that Lemma, we know that for

each i ∈ {1, 2, ..., B−1}, with probability greater than 1−ε′,

|XiYi − θiνi| ≥M.

This means that with probability greater 1− ε
2 , all of these

inequalities hold. We consider the random variable Ẑ which
is Z conditioned on this event and use Hoeffding’s inequality,
to get that

Pr
(
|Ẑ − µ| > t

)
≤ exp− 2t2∑

iM
2
i

.

Looking closer at the denominator of the exponent, we get:∑
i

M2
i =

∑
i

(
3
√
L
(
θ

3
2
i + ν

3
2
i

)
+ 3L2

)2

≤
∑
i

(
9L
(
θ3
i + ν3

i

)
+ 9L4

)
= 9BL4 + 9L

(∑
i

θ3
i +

∑
i

ν3
i

)

so the probability that |Ẑ − µ| > t is at most

ε+ e
− 2t2

9BL4+9L(
∑
i θ

3
i
+

∑
i ν

3
i ) ≤ ε+ e

− 2t2

5BL4+5L(
∑
i θ

3
i
+

∑
i ν

3
i ) ,

as needed.

C. Proof of Theorem 1

Proof: The estimate s′ we use for s is the Ordinary
Least Squares solution s′ := (ATA)−1AT d (ATA is an
invertible linear transformation from U to itself since the
graph is connected), so we get an error of

s− s′ = (s− (ATA)−1AT (As− β))

= (ATA)−1ATβ.

Denote Q := (ATA)−1AT . The error is Qβ, so we wish to
investigate the typical size of Qβ for normal β. The expected
squared error is therefore

E [< Qβ,Qβ >] = E
[
< QTQβ, β >

]
.

Since QTQ is symmetric, we may diagonalize it with an
orthonormal basis of eigenvectors vi corresponding to eigen-
values λi, and write β in that basis, which gives that the
expected inner product above is equal to∑

i

λiE
[
< β, vi >

2
]

= σ2
∑
i

λi (12)

where λi are the eigenvalues corresponding to vi, i.e. the
eigenvalues of QTQ. The expected root mean squared error

is therefore

E

√ ||s− s′||2
m

 ≤√E [< Qβ,Qβ >]

m
(13)

=
1√
m
σ

√∑
i

λi, (14)

where the first inequality is Jensen’s inequality applied on the
concave function x→

√
x. Note that the nonzero eigenvalues

of QTQ are the same as those of QQT , which may be
rewritten as

QQT = (ATA)−1ATA(ATA)−1 = (ATA)−1.

If we considered the transformation ATA on RV (rather
than RV0 ), we would see that the matrix ATA is a matrix
of special interest - it contains, on its diagonal, the degrees
of the nodes of the graph, and for every pair of days i, j, it
contains either −1 on location (i, j) an edge connects them
and 0 otherwise. This matrix is often called the Laplacian of
the graph, and its spectral decomposition is a much-studied
object in Spectral Graph Theory. Note that the smallest
eigenvalue of the Laplacian is 0 with eigenvector (1, 1, ..., 1)
(see for instance [12]), but we restrict it to RV0 , which is the
perpendicular space to its 0-eigenspace, which means that its
smallest eigenvalue on this subspace is the second smallest
eigenvalue of the original Laplacian, λ̂2 = λ2(ATA). This
quantity is often referred to as the algebraic connectivity of
the graph G. Particularly, from [13, Theorem 1.4], we know
that for a random graph with m vertices where each pair of
vertices has an edge with probability p independently, if p =

ω
(
log(m)
m

)
, then we get that λ̂2 = mp + O(

√
mp log(m))

with high probability. In other words, we can choose H,m0

to be large enough so that we get that if p > H log(m)
m , then

with probability at least 1− ε
2 ,

λ̂2 ≥ mp−
√
H
√
mp log(m)

≥
(

1− 1√
H

)
mp ≥ mp

1 + 2√
H

.

From Equation (13), we learn that the overall root mean
squared error in our estimate will be in expectation at most
σ
√∑

i λi for λi the eigenvalues of (ATA)−1. These are the
inverses of the eigenvalues of the Laplacian ATA, which we
know are all at least (1 + o(1))mp. So the expected root
mean squared error is at most(

1 +
2√
H

)
1√
m
σ

√∑
i

1

mp

=

(
1 +

2√
H

)√
H

1√
m
σ

√
1

p
=

(
1 +

2√
H

)
σ
√
mp

.

This is a bound for the expectation of the root mean
squared error. From Markov’s inequality, we know that with
probability at least 1− ε

2 , we have that the root mean squared
error is at most

2

ε

(
1 +

2√
H

)
σ
√
mp

.
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