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Abstract— In this paper, an adaptive observer is designed,
which addresses the problem of joint estimation of state and
the unknown parameters that emerge in the system dynamics
as well as the output equation of a multi-input multi-output
(MIMO) plant. Conventional adaptive observers ensure param-
eter convergence when the input-output signals are significantly
‘energy-rich’ to satisfy the persistence of excitation (PE). The
proposed work develops a two-layered filter adaptive observer
architecture based on initial excitation (IE), which relaxes
the stringent PE condition in terms of excitation requirement
and online verifiability. The unknown initial condition of the
state is strategically appended with the vector of the unknown
parameter, which essentially results in a higher dimensional
estimator. This extended parameter estimator proves to be
instrumental in ensuring uniformly global exponential stability
(UGES) of the estimation error, applicable in a delayed sense.
As far as the authors are aware this is the first work where
a ‘relaxed’ excitation condition is utilized for simultaneous
estimation of states and the unknown parameters which appear
both in the state dynamics and the output. To validate the
efficacy of the performance of the adaptive observer proposed,
a simulation study has been undertaken on a remotely piloted
aircraft model.

I. INTRODUCTION

An adaptive observer is a recurrent technique used to
simultaneously estimate the states which are immeasurable
and the parameters that are unknown. To deal with an
uncertain SISO LTI system, an adaptive observer technique
was proposed in [1]. Using minimal realization, an alternative
approach was introduced in [2]. In [3], [4] an alternative
non-minimal system representation was employed for the
synthesis of adaptive observer for single-input single-output
(SISO) systems. Another design was developed in [5], aiming
to ensure that the parameter estimates would exponentially
converge to the true parameters at an adjustable rate. Build-
ing upon the findings presented in [2], an equiobservable
canonical system form was introduced in [6] for multi-input,
multi-output (MIMO) systems. In [7], a straightforward and
computationally efficient scheme for adaptive observers was
introduced for MIMO systems with linear time-invariant
(LTI) dynamics. This approach was further extended to
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MIMO systems with linear time-varying (LTV) dynamics in
[8], [9].

In each of the adaptive observer designs mentioned above,
the unknown parameters appear in the state dynamics only.
The problem of uncertainty in the output, due to the difficulty
of the appearance of unknown parameters in output feedback
term, was lately addressed in the 1980s in [10]. Subsequently,
various adaptive observer designs with uncertainty in output
relation were proposed in [11]–[13]. Algorithm to simul-
taneously estimate state and unknown parameters both in
state and output relation was first developed in [9] where
a global convergent adaptive observer was proposed, and
later followed by a high gain adaptive observer in [14] for
MIMO nonlinear systems. Recently, using the method of
decoupling parameter estimation and state observation, an
adaptive observer is proposed in [15].

The convergence of parameters in all the above-cited
designs of adaptive observer hinges around the requirement
that the input signal must be an ”energy-rich” probing signal
at an appropriate frequency to ensure the persistence of
excitation (PE) (refer to chapter 6 of [16]). Furthermore, this
signal needs to maintain a substantial richness of trajectory
throughout the entire operational time. Nonetheless, it is
impractical to consistently observe if the signal is persistently
exciting, as this requirement depends on the signal’s future
behavior. With a motive to relax stringent PE condition, a
contemporary approach of initial excitation (IE) condition
[17]–[21] based switched adaptive observer was brought up
and highlighted in [22], [23] for SISO LTI systems followed
by a robust adaptive observer [24] for MIMO LTI systems
(subjected to unmodeled bounded disturbances), which re-
laxes the strict PE condition. This work builds upon the
authors’ earlier work [22]–[25] and tackles a more intricate
problem by developing an IE-based adaptive observer for
a category of MIMO LTI systems where systems involve
unknown parameters in both the system dynamics and the
output relationship while also relaxing the stringent PE con-
dition. The proposed adaptive observer employs an estimator
with a higher dimensionality than the parameter space, as
discussed in [24], [26]. In this approach, the initial states
that are not directly accessible are tactfully considered as
extra unknown parameters and are appended with the vector
of unknown system parameters. This incorporation enables
the utilization of an IE-based single-switching mechanism,
ensuring uniformly global exponential stability (UGES), ap-
plicable in a delayed context. As far as authors are aware this
work is the first of its kind where actuator and sensor faults
are simultaneously dealt with, under a relaxed excitation
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condition (IE).
A Lyapunov-based analysis establishes closed-loop

switched system stability ensuring that the extended
parameter estimator (beyond the dimension of the parameter
space) provides uniformly global exponential stability
(UGES), in a delayed context. Simulation results reinforce
the advantages of the suggested algorithm

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. Model Description

A MIMO LTI system is considered which is affected by
parametric uncertainty in both system dynamics and output
relation that appears in linear regression form as follows

ż(t) = Az(t) +Bu(t) + ϕ(u, y)θ , z(t0) = z0

y(t) = Cz(t) + φ(u, y)θ (1)

where z(t) ∈ Rn, y(t) ∈ Rm, u(t) ∈ Rl denote state,
output and input vectors, respectively. Linear regression
terms ϕ(u, y)θ, φ(u, y)θ represent uncertainty in the state
dynamics and output, respectively where θ ∈ Rp is a con-
stant vector representing the unknown regression coefficient,
ϕ(u, y) ∈ Rn×p and φ(u, y) ∈ Rm×p which are typically the
function of known signals (u, y), represent the time-varying
regressor matrices. Also, the triplet (A,B,C) is observable
and controllable.

B. Objective

Incorporating information from both the input u(t) and
output y(t), the objective is to devise an adaptive observer
capable of jointly estimating the system state z(t) and
the unknown parameters θ that feature in both the system
dynamics and the output relationship given by (1).

Assumption 1: It is assumed that the system input u(t)
stabilizes the system in such a way that u(t), z(t) ∈ L∞,
i.e., u(t) ∈ U and z(t) ∈ Z where U ⊂ Rl, Z ⊂ Rn are
compact sets.
It’s important to emphasize that this is a customary assump-
tion within the realm of adaptive observer design [5], [27],
[28].

C. Preliminary Definitions and Concepts
Many of the conventional adaptive observer designs ne-

cessitate the persistence of excitation (PE) condition for the
regressor to ensure parameter convergence [1], [29], [5],
[7], [30], [31]. To address the influence of initial conditions
on the regressor, the concept of uniform Persistence of
Excitation (u-PE) is introduced, as detailed in [32]. This
definition is specifically formulated for the pair (ξ, f), where
ξ(t, z) represents the regressor while f(t, z) characterizes the
system’s dynamics, and it is articulated as follows

ż = f(z, t), z(t0) = z0, t ∈ [t0,∞), t0 ≥ 0 (2)

Definition 1: A function ξ(z, t) ∈ Rq×p, where q > p >
0, is uniformly persistently exciting (u-PE) w.r.t. f(z, t) (in
(2)) if, ∃TPE , γPE , > 0,∀(z0, t0) ∈ Rn ×R≥0, such that all
corresponding solutions satisfy

t+TPE∫
t

ξ(r, z(r))ξT (r, z(r)) dr ≥ γPE Iq, ∀t ≥ t0

where t0 corresponds to the initial time, and z0 = z(t0)
denotes the initial state.

The subsequent proposition indicates that the PE signal
necessitates an infinite amount of energy

Proposition 1: ΞPE ∩ΞL2 = ∅, where ΞPE is the space of
PE signals and ΞL2

represents the space of square-integrable
signals.

Proof: For proof refer to [24].
Unlike the Persistence of Excitation (PE) condition, the
adaptive observer proposed operates under a much relaxed
initial excitation (IE) requirement on the regressor [17]–[21].

The formal definition of IE condition can be referred in
[18] and stated as

Definition 2: A function ξ(z, t) ∈ Rq×p, where q > p >
0, is uniformly initially exciting (u-IE) w.r.t. f(z, t) (in (2))
if, ∃ , TIE , γIE > 0, ∀(z0, t0) ∈ Rn × R≥0, such that all
corresponding solutions satisfy

t0+TIE∫
t0

ξ(r, z(r))ξT (r, z(r)) dr ≥ γIEIq

Compared to the PE condition, it can be established that IE
signals are proven to possess finite energy, as given in the
subsequent proposition.

Proposition 2: ΞIE ∩ΞL2
̸= ∅, where ΞIE is the space of

IE signals.
Proof: For proof refer to [24].

III. ADAPTIVE OBSERVER

A two-tier filter architecture is proposed for the design of
adaptive observer, which is subsequently discussed.

A. First tier filtering
Using simple manipulation, the dynamic system men-

tioned in (1) can be rewritten as

ż(t) = [A− LC]z(t) +Bu(t) + Ly(t) + (ϕ(t)− Lφ(t)︸ ︷︷ ︸
ρ(t)

)θ, z(t0) = z0

y(t) = Cz(t) + φ(t)θ (3)

where the feedback gain L ∈ Rn×m is selected in a manner
that ensures (A−LC) to be Hurwitz and ρ(t) is considered
to be a unified version of the regressors appearing in state
dynamics and the output relation of (1). For the synthesis of
adaptive observer, it is now possible to view the estimation
of z(t) as reliant on two external signals [8], denoted as
ρ(t)θ and Bu(t)+Ly(t), therefore, to streamline the design
process, the solution of the state equation in (3) can be
decoupled as

z(t) = zθ(t) + zu,y(t) (4)

where zθ(t) and zu,y(t) are the contribution to the state
dynamics arising from the signals ρ(t)θ and Bu(t)+Ly(t),
respectively and their respective dynamics are given as

żθ(t)=[A−LC]zθ(t)+ρ(t)θ, zθ(t0)=z(θ)0 (5)
żu,y(t)=[A−LC]zu,y(t)+Bu(t)+Ly(t), zu,y(t0)=z(u,y)0 (6)
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and in line with (4), z(t0) = zθ(t0)+ zu,y(t0). The observer
for zθ(t) can be given as

˙̂zθ(t)=[A−LC]ẑθ(t)+ρ(t)θ̂+µ(t), ẑθ(t0)=ẑ(θ)0 (7)

and following similar lines, observer for zu,y(t) is given by

˙̂zu,y(t)=[A−LC]ẑu,y(t)+Bu(t)+Ly(t), ẑu,y(t0)=ẑ(u,y)0 (8)

where θ̂(t) denotes the parameter estimate, and µ(t) serves
as an auxiliary signal to account for the disparity between
the true parameter θ and its estimate θ̂(t). This signal holds
significant importance in the formulation of the estimation
law and will be devised subsequently.

The estimated state vector ẑ(t) can be obtained as ẑ(t) =
ẑθ(t) + ẑu,y(t). Further, combining (7) and (8) yields

˙̂z(t)=[A−LC]ẑ(t)+Bu(t)+Ly(t)+ρ(t)θ̂+µ(t), ẑ(t0)=ẑ0 (9)

where ẑ(t0) = ẑθ(t0)+ẑu,y(t0) and the state estimation error
(z̃(t) ≜ ẑ(t)−z(t)) dynamics can be obtained by subtracting
(3) from (9) as

˙̃z(t)=[A−LC]z̃(t)+ρ(t)θ̃+µ(t), z̃(t0)=ẑ0−z0 (10)

where θ̃(t) ≜ θ̂(t)− θ represents the parameter estimation
error.

To develop the adaptive law, another auxiliary signal
Ω(t) ∈ Rn, which is a linear combination of θ̃(t) and z̃(t),
is defined as [8]

Ω(t) = z̃(t)−Ψf (t)θ̃(t) (11)

By taking the derivative of (11) and employing (10), the
dynamics of Ω can be expressed as

Ω̇(t) =(A−LC)z̃(t)+ρ(t)θ̃(t)−Ψ̇f (t)θ̃(t)−Ψf (t)
˙̃
θ(t) +µ(t)

=(A−LC)(Ω(t)+Ψf (t)θ̃(t))+ρ(t)θ̃(t)−Ψ̇f (t)θ̃(t)

−Ψf (t)
˙̃
θ(t) +µ(t)

=(A−LC)Ω(t)+[(A−LC)Ψf (t)+ρ(t)−Ψ̇f (t)]θ̃(t)

−Ψf (t)
˙̃
θ(t) +µ(t) (12)

It can be observed that proper choice of variables µ(t) and
Ψf (t) facilitates the solution of error dynamics mentioned
in (11). One such choice for µ(t) is

µ(t) = Ψf (t)
˙̂
θ(t) (13)

since ˙̃
θ(t) =

˙̂
θ(t), the dynamics of Ψf (t) is given as

Ψ̇f (t) = (A−LC)Ψf (t)+ρ(t), Ψf (t0) = 0 (14)

where A,L,C and ρ(t) are known and therefore, it becomes
feasible to compute Ψf (t) online. The dynamics of the ma-
trix signal Ψf (t), as defined in equation (14), correspond to a
filtered version of the signal ρ(t) and constitute the first-layer
filtering in the adaptive observer design. The aforementioned
choice of µ(t) and Ψf (t) simplifies the dynamics of error-
like auxiliary signal Ω as

Ω̇(t) = (A− LC)Ω(t), Ω(t0) = Ω0 (15)

Here, Ω0 = z̃0, since Ψf (t0) = 0. Further, the solution to
(15) is presented as

Ω(t)=exp{(A−LC)(t−t0)}Ω0, t ≥ t0 (16)

Since the matrix (A−LC) is Hurwitz, Ω(t) is exponentially
converging. Therefore, (10) signifies the necessity of devising
an appropriate update law such that the convergence of θ̃(t)
determines the convergence of z̃(t). The introduction of Ω(t)
is pivotal in the subsequent analysis of stability.
B. Linear Parametrization

The advantage of this proposed design is rooted in its
utilization of a linear parametrization. This approach involves
the incorporation of not only the unknown system parameters
but also the unknown initial conditions, forming an extended
unknown parameter vector [26]. This extended parameter
vector is instrumental in enabling the development of the
IE-based adaptive observer.

Upon multiplying both sides of equation (11) by C and
subsequently rearranging, we derive the following expression

Cz̃(t) = CΨf (t)θ̃(t) + CΩ(t) (17)

Further, by utilizing (16) and the output equation of (1) in
(17), the following relationship can be achieved

Cẑ(t)︸ ︷︷ ︸
ŷ(t)

−(y(t)−φ(t)θ)︸ ︷︷ ︸
Cz(t)

=CΨf (t)(θ̂(t)−θ)︸ ︷︷ ︸
θ̃(t)

+Cexp{(A−LC)(t−t0)}Ω(t0)

(18)

By substituting µ(t0) = z̃(t0) = ẑ(t0)− z(t0) into (18) and
rearranging, the subsequent expression is derived

ŷ(t)−y(t)− CΨf (t)θ̂(t)− Cexp{(A−LC)(t− t0)}ẑ0︸ ︷︷ ︸
g(t)

=

− φ(t)θ − CΨf (t)θ − Cexp{(A−LC)(t− t0)}z0, t ≥ t0 (19)

Ultimately, (19) can be reformulated into a Linear in Param-
eters (LIP) form as follows.

g(t)=[−(φ(t) + CΨf (t)) − Cexp{(A−LC)(t− t0)}]︸ ︷︷ ︸
ζ(t)

[
θ
z0

]
︸ ︷︷ ︸
Θ

, t ≥ t0

(20)

where g(t) ∈ Rm, ζ(t) ∈ Rm×(p+n) are functions that rely
on known signals and therefore, can be computed online,
Θ ∈ Rp+n includes the vector containing both the uncertain
system parameters θ and the unknown initial state z0. Thus,
the first-layer filtering is of utmost importance in attaining
the linearity in the unknown parameters (θ, z0) and this, in
turn, simplifies the development of a stable adaptive observer,
as elaborated in subsection D of section III.

C. Second tier Filtering
The following low-pass filter dynamics are proposed

which would avert the PE restriction, inspired from [5], [18].

Ψ̇ff =− cfΨff + ζT ζ, Ψff (t0) = 0 (21)

u̇f =− cfuf + ζT g, uf (t0) = 0 (22)

where cf > 0 is a positive scalar gain, Ψff (t) ∈
R(p+n)×(p+n) is the double-filtered regressor and uf (t) ∈
Rp+n. Hence, the motivation of second-tier filtering is to
construct a square matrix regressor which upon fulfilling the
IE condition, facilitates the rank sufficiency condition.

Solving (21) and (22) and performing straightforward
manipulations, the resulting relationship plays a pivotal role
in the formulation of the adaptive law.

uf (t) = Ψff (t)Θ, t ≥ t0 (23)
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Upon integrating (21), the expression for the square matrix
Ψff (t) is derived as follows

Ψff (t) = exp{−cf t}︸ ︷︷ ︸
≥0

t∫
t0

exp{cf r}︸ ︷︷ ︸
≥exp{cf t0}≥1

ζT (r)ζ(r)︸ ︷︷ ︸
≥0

dr, t ≥ t0 (24)

Corollary 1: The double-filtered regressor Ψff (t) is
a function which is positive semi-definite over time
i.e.Ψff (t) ≥ 0, ∀t ≥ t0.
Further, consider the following assumption.

Assumption 2: The regressor ζ(y, t) is u-IE, as defined in
Definition 2, with respect to the right-hand side of (1), (9),
(21), (22) and (26) for some TIE , γIE > 0.

The condition for IE can be seen as a measure of the
richness of information pertaining to parameters unknown,
present during the initial time frame. It serves as the fun-
damental basis for the forthcoming developments in the
proposed work.

Remark 1: A necessary and sufficient condition for the
regressor ζ(y, t) to be IE is that Ψff (t0 + TIE) is positive
definite (PD) and Ψff (t) > 0, ∀t ∈ [t0 + TIE , tf ], for
any t0 + TIE < tf < ∞ (refer lemmas 4 and 5 in
[18]). Consequently, the condition of IE for the regressor
ζ(t, y), as stated in Assumption 2, can be validated by
continuously evaluating the determinant of Ψff (t) online. If
the determinant is positive, it indicates that the IE condition
on the regressor ζ(t, y) is met.

When Assumption 2 holds, the IE information can be
obtained through the filter output described in (21). However,
a limitation of this closed-loop filter output is the exponential
decay of IE information as

Ψff (t) ≥ γIE exp{−cf (t− t0)}Ip, ∀ t ≥ t0 + TIE (25)

where cf is the forgetting factor.
Remark 2: Under the IE assumption, transient informa-

tion within the initial time-window captures adequate in-
formation about the unknown parameters. The closed-loop
filter dynamics, as presented in (21), capture the requisite
information, assuming the IE condition (Assumption 2) is
satisfied. However, it is important to note that it exhibits
a gradual information decay with an exponential decay
rate denoted as cf in (25). To address the attenuation of
this information, a novel switching mechanism has been
integrated into the parameter estimator design, as detailed
in the following subsection.

D. Design of Parameter Estimation
The parameter update law is designed as

˙̂
Θ = −ΓΘ(F1 + F2 + sFIE) (26)

where F1,F2 and FIE are given as

F1 ≜ c1ζ
T (ζΘ̂− g), (27)

F2 ≜ c2Ψ
T
ff (Ψff Θ̂− uf ) (28)

FIE ≜ cIE(QΘ̂− P ), (29)

where the gains c1, c2, cIE are positive constants and
ΓΘ ∈ R(p+n)×(p+n) is a positive-definite symmetric adap-
tation gain matrix, constant signals Q ∈ R(p+n)×(p+n) and

Fig. 1: Block diagram for IE-based adaptive observer

P ∈ Rp+n correspond to the stored values of Ψff and uf ,
respectively at t = t0 + TIE (i.e. the moment when the IE
condition is met) and defined as

P ≜ uf (t0 + TIE), Q ≜ Ψff (t0 + TIE), (30)

The switching signal s(t)∈R which is piecewise-constant is
defined as

s(t) =

{
0 for t ∈ [t0, t0 + TIE)

1 else
(31)

Remark 3: The term t0+TIE , representing the time when
the IE condition is met (as outlined in Definition 2), is
determined online by monitoring when the regressor Ψff (t)
becomes positive-definite (or full-rank). It is important to
note that thereafter (t0 + TIE ≤ t < ∞), Ψff (t) remains
positive-definite [18].
Fig. (1) depicts a block diagram illustrating the algorithm for
the proposed adaptive observer.

E. STABILITY ANALYSIS
Theorem 1: For the system described in (1), assuming that

the triplet (A,B,C) is both controllable and observable,
and given that Assumption 1 is satisfied, the parameter
update law outlined in (26)-(29) ensures the global uniform
Lyapunov stability of the parameter estimation error Θ̃(t).
Furthermore, if Assumption 2 regarding ζ(t, y) is met with
some γIE and TIE > 0, the parameter estimation error
undergoes exponential convergence to zero i.e.

||Θ̃(t)|| ≤ α1||Θ̃(t0+TIE)||exp{−α2(t−t0−TIE}, ∀t ≥ t0+TIE
(32)

where both α1 and α2 are positive constants.
Proof: Taking into account the following Lyapunov

function candidate

V (Θ̃) =
1

2
Θ̃TΓ−1

Θ Θ̃ (33)

which satisfies the following inequality

1

2
λ−1
max(ΓΘ)︸ ︷︷ ︸
λM

||Θ̃||2 ≤ V ≤
1

2
λ−1
min(ΓΘ)︸ ︷︷ ︸
λm

||Θ̃||2 (34)

The time derivative of (33) yields

V̇ = Θ̃TΓ−1
Θ

˙̂
Θ (35)
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Using switched adaptive law (26) and (23) in (35) yields

V̇ =−c1 Θ̃T ζT︸ ︷︷ ︸
ψ

ζΘ̃− c2 Θ̃
TΨTff︸ ︷︷ ︸
χ

Ψff Θ̃− s cIEΘ̃
TQΘ̃ (36)

When considering the time interval t ∈ [t0, t0 + TIE) and
applying an upper bound to the inequality in (36), following
is obtained

V̇ ≤−c1||ψ||2 −c2||χ||2 ≤ 0 (37)

Therefore, the inequality (37), which is negative semi-
definite (NSD), shows uniform global stability (UGS) of the
parameter and initial condition estimation error Θ̃(t).

Further, if Assumption 2 is satisfied, V̇ in (36) can be
upper bounded as

V̇ ≤−c1||ψ||2−c2||χ||2−cIE λmin(Q)||Θ̃||2, ∀t ∈ [t0 + TIE ,∞)
(38)

where λmin(Q) represents the minimum eigenvalue of
matrix Q. By further upper bounding (38) and incorporating
(34), subsequent inequality is achieved.

V̇ ≤ −βV, ∀t ∈ [t0 + TIE ,∞) (39)

where β = 2cIEλmin(Q)
λM

> 0 is a positive scalar. The solution
estimate of the above differential inequality in (39) can be
written as

V (t)≤V (t0 + TIE)exp{−β(t−t0−TIE)}, t ≥ t0 + TIE (40)

Use of (34) in the inequality (40) results in

||Θ̃(t)|| ≤

√
λm

λM
||Θ̃(t0 + TIE)|| exp{−

β

2
(t− t0 − TIE} (41)

Observing (41) and (32), it can be distinguished that α1 and
α2 are

√
λm

λM
and β

2 respectively. These two entities when
carefully noticed are uniform with respect to the initial condi-
tions. As, the Lyapunov function candidate in (33) is radially
unbounded, the algebraic inequality in (41) necessitates the
origin of the parameter estimation error dynamics achieves
uniformly global exponential stability (UGES) ∀t ≥ t0+TIE

(in a delayed sense).

Boundedness of signals

The proof based on Theorem 1 establishes that Θ̃(t) ∈
L∞. Since, Θ remains constant, therefore, Θ̂(t) ∈ L∞.
From Assumption 1 and ρ(t), the stable low-pass filter
(14) signifies that Ψf (t) ∈ L∞. The stable dynamics (16),
demonstrates that Ω(t) ∈ L∞. Therefore, (11) proves that
z̃(t) ∈ L∞ which in turn proves that ỹ(t) ∈ L∞. Therefore,
both ẑ(t), ŷ(t) ∈ L∞. From (20) it can be verified that
ζ(t), g(t) ∈ L∞. Hence, the dynamical equations (21) and
(22), representing the linear and stable filters, prove that
Ψff (t), uf (t) ∈ L∞, respectively. Finally, from (26) it can
be proved that ˙̂

Θ(t) ∈ L∞.

IV. SIMULATION RESULTS

The subsequent dynamics is taken into account for sim-
ulation, characterizing the linearized lateral behavior of a

remotely piloted aircraft (refer [11], p. 188).

ż(t) = Az(t) +B

[
θ1 u1(t)
θ2 u2(t)

]

y(t) = Cz(t) +

θ30
0

 (42)

A =


−0.277 0 −32.9 9.81 0
−0.1033 −8.525 3.750 0 0
0.3649 0 −0.639 0 0

0 1 0 0 0
0 0 1 0 0



B =


−5.432 0

0 −28.64
−9.49 0

0 0
0 0

 , C =

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1



where z ≜ [z1, z2, z3, z4, z5]
T represents side slip, roll

rate, yaw rate, bank angle and yaw angle, respectively,
u ≜ [u1, u2]

T are rudder and aileron, respectively, y ≜
[y1, y2, y3]

T . The inputs u1(t) and u2(t) are affected by
faults represented by scalars θ1 and θ2, respectively. A fault
in the sensor measurement corresponding to y1(t) is also
considered affected by the scalar bias θ3, while there is no
bias fault corresponding to the output components y2(t) and
y3(t). The following choice of regressor matrices ϕ and
φ renders (42) equivalent to (1) and leads to a common
parameter vector to appear both in the system dynamics and
the output relation

ϕ =

[
u1 0 0
0 u2 0

]
, φ =

0 0 1
0 0 0
0 0 0


The actual system parameters to be determined are pro-

vided as : θ1 = .75, θ2 = 1.25 and θ3 = .25. The
stabilizing feedback gain is chosen as L = [7.5 − 7 −
1.5 1 − 1.6 ; 9.8 0 0 1 0 ;−29.1 2.8 4.9 0 6.2]T .
The initial states are taken as z0 = [1 1 1 1 1]T ,
ẑ0 = [1 1 1 1 1]T and θ̂(0) = [1 1 0]T . The selection
of adaptation gain is made as Γθ = 1000I8, c1 =
0.0001, c2 = 0.0001, cIE = 1 and cf = 0.01. The
input signals are u1(t) = 0.5 exp(−0.3 t)[2 sin (5t) +
2 cos (9t) + 2 sin (10t)2 + 2 sin (

√
5πt)] and u2(t) =

0.5 exp(−0.3 t)[2 sin (10t) + 2 cos (15t)], which possess fi-
nite energy and therefore are not PE signals, however, are
IE.
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Fig. 2: Parameter estimation error Θ̃(t)
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Figure (2) depicts parameter estimation error where it is

evident that the IE condition is met at approximately t =

2244
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3.1s. As a result, the system parameter estimates converge to
their actual values, demonstrating a UGES (Uniform Global
Exponential Stability) result. Fig. (3) illustrates the graph
representing the state estimation error z̃(t). Furthermore,
in figure (4), the norm of parameter estimation ||Θ̃(t)|| is
displayed, confirming that when the IE-condition is met,
the proposed adaptive observer achieves exponential conver-
gence of parameter estimation error. Figure (5) illustrates an
input signal with finite energy.

V. CONCLUSION

This paper proposes an IE-based adaptive observer for
MIMO LTI systems, where uncertain parameters are present
in both the system dynamics and the output relationship. A
two-tier filter architecture is utilized where the first layer
helps in achieving linear regression, where the unknown
coefficient of regression is constructed by combining the un-
known initial condition of the state vector with the uncertain
parameter vector, creating an extended parameter estimator.
While in the second layer, this approach eliminates the
requirement for a restrictive PE condition. In a nutshell, the
wholesome design facilitates a switched adaptive law, guar-
anteeing UGES of error (applicable in a delayed sense). In
turn, this eases the identification of both sensor and actuator
faults simultaneously without necessitating the satisfaction of
strong PE condition. Further, the simulation results comply
with the claims in the proposition.
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