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Abstract— This paper presents a novel approach to develop
a tuning rule for a Proportional-Integral-Retarded (PIR) con-
troller when controlling a second-order system with unstable
zeros. Particularly, we address the stability and performance
issues that the right-half-plane zeros impose. With this aim, we
use the multiplicity-induced-dominance properties to achieve a
partial pole placement strategy guaranteeing the stability of the
closed-loop system. Through this method, we derive analytical
formulas for the parameters of the PIR controller that induce a
predefined algebraic multiplicity for a group of real and dom-
inant roots, ultimately enhancing system’s response. Finally,
numerical examples and a simulation benchmark conducted
on a switched power converter show the effectiveness of the
method.

I. INTRODUCTION

In recent years, there has been a growing interest in delay-
based controllers, which incorporate an artificial time-delay
as a design parameter. Such an interest arises from their
applications in real-world control systems, where it has been
shown that delay-based controllers improve performance,
stability margins and robustness (see, for instance [1]–[3]).
As highlighted in [4], incorporating delay into the control law
facilitates the stabilization of several classes of dynamical
systems. Moreover, in the context of time-delay systems,
various methodologies are available for stability analysis.
However, challenges arise from the need of designing low-
complexity controllers capable of achieving optimal perfor-
mance while considering the trade-offs between controller
complexity, stability and robustness [5]. Since proportional-
integral-derivative (PID) controllers are widely adopted in
industrial control loops due to their simplicity and perfor-
mance, the issue of parameter selection for these controllers
becomes particularly relevant (e.g., [6]).

In this paper, we propose an analytical approach for
designing Proportional-Integral-Retarded (PIR) controllers,
which, similarly to PID, aims to provide a clear and easily
implementable alternative for controller parameter selection.
Although infinite-dimension, such a controller belongs to
the class of low complexity controllers. For example, other
controllers belonging to this class are represented by delay
blocks [7] used to stabilize integrator chains or delayed
PD controllers encountered in human balancing stabilization
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[8]. For a more general discussion on such controllers as
well as some of their applications, the reader is referred to
[9]. Previous research has established tuning guidelines for
PIR controllers operating on second-order systems without
unstable zeros, demonstrating their effectiveness in achieving
desired exponential decay rates and significantly enhancing
closed-loop system performance [10]. However, our study
focuses on the control of second-order non-minimum phase
systems, where the presence of Right-Half Plane (RHP) zeros
imposes limitations on the achievable closed-loop bandwidth,
potentially leading to instability and performance deterio-
ration [11]. To the best of the authors’ knowledge, there
is currently no available methodology to solve this specific
problem.

Spectral methods can inform about the stability prop-
erties of linear systems by examining the distribution of
the roots of their characteristic function. While for finite-
dimensional linear time-invariant (LTI) systems, one of the
most straightforward approaches to controlling the dynamic
behavior of closed-loop solutions is through the pole place-
ment methodology [12], this technique does not generalize
to the case of LTI delay systems, which are of infinite-
dimensional nature. However, a diverse array of specialized
spectral techniques are available. In Ramı́rez et al. [10], for
example, a tuning rule for PIR controllers is developed using
algebraic geometry and elimination theory. However, the
presence of a RHP zero represents a challenge that requires
a deeper analysis to derive appropriate practical tuning rules.
Hence, there is a justified need for another analysis that
comprehensively addresses this specific scenario.

The multiplicity-induced-dominancy (MID) property [13]–
[15] systematically assigns roots, allowing for over-order
multiplicities in the characteristic roots. Building on MID
principles, the Generic Multiplicity-Induced Dominancy
(GMID) method reveals the stability implications of having
a real root of maximal multiplicity in certain time-delay
systems [16]. This property underscores the real root’s domi-
nance, establishing it as the spectral abscissa under specified
conditions. Furthermore, a Partial Pole Placement (PPP)
method, as outlined in [17], can help determining controller
parameters ensuring the designated real root emerges as the
rightmost, enhancing system stability through GMID.

The main objective of the paper is to utilize the PPP
strategy to develop analytical formulas for fine-tuning the
parameters of the PIR controller. The analysis is grounded on
a comprehensive model of a non-minimal phase second-order
system, considering the prerequisites necessary to extend
the MID property in this case. We validate our approach
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using a numerical example and the TDS-Control software
package [18]. In addition, we apply this tuning criteria to a
synchronous boost DC-DC converter using a power electron-
ics simulation environment and assess its effectiveness with
different pole placement options, numerical dominancy and
an evaluation of different performance indices.

The rest of the paper is structured as follows: In Section II,
we provide essential definitions necessary to comprehend the
MID property, particularly within the framework of second-
order non-minimum phase systems. Section III is dedicated
to deriving the algebraic equations that compose the PIR
controller tuning rule, which stands as our main contribution.
In Section IV, we demonstrate the effectiveness of this tuning
rule by means of a design example conducted in a power
electronics simulation platform. Finally, the article concludes
with a discussion of the insights and findings resulting from
the proposed analysis.

II. PRELIMINARIES & PROBLEM FORMULATION

Consider a general model of a single-input/single-output
(SISO) second-order non-minimum phase system whose
transfer function given by

G(s) := c · 1− zs
s2 +as+b

, (1)

where a,b,c ∈ R+, and the (unstable) real zero 1/z > 0. As
mentioned in the Introduction, we consider the proportional-
integral-retarded controller defined by the transfer:

C(s) := kp +
ki

s
− kre−hs, (2)

where h > 0 is the intentional delay parameter, and
(kp,ki,kr) ∈ R3 are the controller gains.

Considering this perspective, for systems with time delays
in the feedback loop, spectral methods [19] can be employed
to analyze the asymptotic behavior of the system trajectories
by finding the solutions of a certain characteristic function
or quasi-polynomial. According to definitions [20], [21], the
closed-loop characteristic quasi-polynomial associated with
(1)-(2) can be written as

Q(s;h,kp,ki,kr) := P0(s;kp,ki)+P1(s;h,kr)e−hs, (3)

where P0, and P1 are defined as

P0 := s3 + s2 (a− ckpz)+ s(b+ ckp − ckiz)+ cki,

P1 := ckr
(
zs2 − s

)
.

(4)

The degree of the quasi-polynomial Q given in (3), in the
sense of Pólya-Szegö Bound (see, Proposition 1 below). In
this case, the degree is equal to 6, see, e.g., [22]. As proved
in [23], the following result states a direct link between the
quasi-polynomial’s degree and the permissible multiplicity
of certain spectral values confined within a horizontal strip
α ≤ ℑ(s)≤ β defined as

Proposition 1 (Pólya-Szegö Bound, [24]). Let Q be the
quasi-polynomial given by (3) and α,β ∈ R be such that
α ≤ β . Denote by M the number of roots of Q counted with

multiplicities contained in the set {s ∈ C : α ≤ ℑ(s)≤ β},
then

hk(β −α)

2π
−deg(Q)≤ M ≤ hk(β −α)

2π
+deg(Q), (5)

where hk satisfy the condition 0 := h0 < h1 < .. . < hk.

Setting α = β = 0, the above theorem yields M ≤ 6, which
determines the maximal multiplicity of roots in the point
spectrum of Q.

Remark 2. In the spirit of Proposition 1, one can deduce
that for a given root s0 ∈ C of Q, its multiplicity is at most
equal to 6. Furthermore, if such a maximal multiplicity is
reached, then s0 is necessarily real, and the GMID prop-
erty holds, that is s0 necessarily defines the corresponding
spectral abscissa. Despite the interest of this property from
a purely analytic view point, a control implementation based
on the GMID lacks of robustness, see for instance [25]. As
a matter of fact, for the sake of robustness with respect to
the model’s parametric uncertainties, it appears that it will
be more appropriate to relax constraints on the choice of the
closed-loop spectral abscissa. This can be carried out using
the MID property by assigning a root with an over-order
(intermediate) multiplicity. Specifically, when considering
the PIR controller characterized by the four parameters
(kp,ki,kr,h), it is more appropriate that s0 represents a root
with a multiplicity of 4 within Q, which corresponds to the
least over-order intermediate multiplicity. This multiplicity
arises as a result of the controller’s structure and design.

In the context of dominancy, it is important to emphasize
additional results to the quasi-polynomial for s0. These
definitions highlight the assignment of the dominant root
within the MID property.

Definition 3. The spectral abscissa of the quasipolynomial
Q is given by the real part of the rightmost characteristic
root s0, that is:

ℜ(s0) = max{ℜ(s) : Q(s) = 0} . (6)

As a function of the system parameters (including the
gains and the delay), the spectral abscissa is a continuous,
finite and bounded function, see, e.g., [4]. As shown in [26],
such properties are valid for general characteristic functions
of systems of retarded type.

Proposition 4 ( [8]). If the quasi-polynomial (3) has a real
root s0 with multiplicity at least M, then Q can be written
as

Q(s) = (s− s0)
M
(

1+
∫ 1

0
e−h(s−s0)th

RM−1(s0;ht)
(M−1)!

dt
)
, (7)

where

RM−1(s0;ht) =
M−1

∑
i=0

(
M−1

i

)
P(i)

0 (s0) · (ht)M−1−i. (8)

For a comprehensive and extended exploration of these
definitions, we refer to [4], [8], [27] and the references
therein.
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III. MAIN RESULT

Multiple approaches have been reported for determining
the numerical values of delay-based controller parameters.
Recently, the D-decomposition method has been utilized,
which has the advantage of being a geometric approach that
enables the visualization of the so-called γ-stability prop-
erties via a stability plot [10]. Nevertheless, this approach
becomes complex as the number of available controller
parameters increases. In contrast, the PPP strategy provides a
systematic approach by achieving stability through algebraic
analysis, eliminating complex exponential term, regardless
of the controller’s parameters.

Lemma 5. Let Λ : C→ C be the polynomial defined as

Λ(s) := λ2(s)h2 +λ1(s)h+λ0, (9)

where λ0, . . . ,λ3 are given by

λ0 := 6
(
bz2 +az+1

)
,

λ1(s) :=−3s2 (s2z3 −4sz2 +6z
)
+λ3(s),

λ2(s) := s(sz−1)(s3z2 −3s2z+bz+3s+a),

λ3(s) :=−6s
(
bz2 +az+1

)
+3(bz+a) .

(10)

If Λ(s0) = 0, then s0 is a root of multiplicity four for the
quasi-polynomial Q.

Remark 6. The polynomial Λ introduced in Lemma 5 is
commonly referred as the Elimination-Produced Polynomial
(EPP) in the literature, see, e.g., [28]. This polynomial
establishes a relationship between the admissible solutions
s0 with respect to h. As we are interested in solutions with
h > 0, throughout the remainder of the paper, we select s0
accordingly while ensuring that ℜ{s0}< 0.

Knowing that we can obtain the delay h if a real-root
is assigned from the elimination-produced polynomial, in
the context of forcing appropriate multiplicity and the dom-
inancy, two questions appear:

• What should be the values of kp, ki and kr such that
(s0,h) satisfy the conditions of the elimination-produced
polynomial?

• What is the sufficient condition that ensures that s0 is
dominant?

In light of the findings previously outlined by [22], to
tackle both questions we propose some appropriate sufficient
conditions for the controller parameters guaranteeing the
dominance of the root s0. To simplify the presentation, we
introduce the function R̂ : C×R+ 7→ R+, defined by the
following expression:

R̂(s0;h) := |P0(s0)|h4 +3
∣∣P′

0(s0)
∣∣h3 +

∣∣P′′
0 (s0)

∣∣h2 +6h. (11)

Similarly, we introduce the following real constants
f0, . . . , f3:

f0 := hs0 (hs0z−h+18z)+3(h+2),
f1 := 6+(as2

0z−3s2
0 −a)h2 +(6+(−6z+3)a)h,

f2 := 3h2s3
0z,

f3 := bh2s0(zs0 −1)−18hs2
0 +3b(h(2s0z+1)+2)+6a.

With the notations and definitions above, we have the fol-
lowing result:

Proposition 7. Consider the closed-loop characteristic
quasi-polynomial (3), and let s0 ∈ R−. Choose the control
parameters (h,kp,ki,kr) ∈ R+×R3 as follows:

h :=
−λ1 ±

√
λ 2

1 −4λ2λ0

2λ2
, (12a)

kp :=
6

zc f0

[
f1 − f2 +

(
1− 5h

2

)
zs0 +(a+h)z

]
, (12b)

ki :=
1

zc f0

[
f1

z
+

(
2
z
+ s0 +4h

)
f2 + f3

]
, (12c)

kr :=
6ehs0

ch f0
. (12d)

Assume that there exists a non-empty interval I ⊂ R− such
that for all s0 ∈ I and h given by (12a), the inequality

R̂(s0;h)< 3! (13)

holds. Then, the following statements are true:
(a) the root s0 of Q has multiplicity 4;
(b) the root s0 is a strictly dominant root of Q.

Sketch of Proof. Since h> 0 holds for a given s0, the proof
of (a) follows from Lemma 5. Considering that s0 is a root
of multiplicity 4, the proof of (b) follows from Proposition 4
taking (11) into account.

A. Explanatory example

For a better understanding of our main result, we proceed
to perform a numerical example using the values of the
general model presented in (1). In this case, we have taken
the following values: a = 100,b = c = 10000, and placed
the RHS zero at z = 1/100. Furthermore, it is important
to highlight that the open-loop system is stable since its
characteristic poles are located in −50± j86.60.

Since the EPP only requires a value of s0 to solve in terms
of the delay, we choose to assign three dominant roots at
[−200,−150,−100]. Performing the computations of (12),
the resulting numerical values are listed in Table I.

TABLE I
RESULTING PARAMETERS USING THE PPP ALGORITHM.

Dominant Controller Gains
Root kp ki kr h

s0 =−100 0.4417 22.1045 0.3748 0.0065
s0 =−150 3.1141 41.2223 2.6271 0.0020
s0 =−200 8.8718 60.8585 8.0624 0.0008

In Fig. 1, we present the numerical results that illustrate
the characteristic curve of the EPP, spectrum of the quasi-
polynomial in the complex plane, and the response of the
system to a unit step input. Theplots confirm the existence of
the dominant root s0 for the assigned values, thus validating
our choice of controller parameters. Furthermore, when an-
alyzing the unit step response, we can see an improvement
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in the speed of convergence of the solutions towards the
reference. Assigning the root s0 further to the left has an
impact on the speed of convergence. On the other hand,
a greater undershoot is observed and the appearance of an
overshoot arises due to the non-minimum phase nature of
the system.

In the next section, we expand these ideas by carrying
out an example design of a power electronics converter with
similar characteristics to those we have investigated so far by
applying a systematic methodology adapted to this particular
case.

Fig. 1. EPP solvability curve, and the spectrum of Q(s) using the data
provided in Table I. Computation of the roots is with TDS-Control.

IV. DESIGN EXAMPLE

DC-DC converters play an important role in voltage
regulation. Among the most studied and widely adopted
converters is the synchronous boost converter due to its
higher efficiency and broader operating range [29]. In it’s
linear analysis [30], the transfer function of the synchronous
boost converter, which describes the relationship between the
output voltage and the duty cycle, is given by the second-
order non-minimum phase transfer:

G(s) :=
x̃2(s)
d̃(s)

=
(1−D)ER−LEs

LCRs2 +Ls+R(1−D)2 . (14)

By keeping all system parameters fixed as in the general
form of (1), we have

a =
1

CR
, b =

(1−D)2

LC
, c =

(1−D)E
LC

, z =
L

R(1−D)
. (15)

All the parameters of the converter during its nominal
operation are detailed in Table II.

In our model configuration, all devices are considered
ideal, and switches operate according to the conventional
model provided by the software. To implement our proposed
controller using the PPP strategy, we substitute whole numer-
ical values on formulae (12), first analyzing the elimination-
produced polynomial to locate the solvability curve from

TABLE II
CONVERTER PARAMETERS.

Parameter Details
Description Value Units

fs Switching frequency 150×103 Hz
E Voltage input 48 V
D Duty Cycle 0.6
P Power 100 W
L Inductor 2.7648×10−3 H
C Capacitor 1.66×10−6 F
R Resistance 144 Ω

X2 Voltage output 120 V

which the sufficient dominance condition holds (see, for
instance, Fig. 2) Numerical analysis reveals a vertical asymp-
tote located at −2166.0086. In addition, we know that the
open-loop poles are situated at −2083.3± j5.5, which serves
as a compelling rationale for situating the root s0 to the
left of this threshold. Since for higher values of s0, the
solvability curve passes through regions of negative delay,
and previous studies [26] have demonstrated that under
such conditions, the resulting equations are categorized as
advanced-type delay differential equations, which leads to
instability. Finally, by applying the tuning criteria above,

Fig. 2. EPP solvability curve of the synchronous boost converter in closed-
loop with a PIR controller.

the resulting data is fed into PLECS/PLEXIM software for
power electronics simulation and control design in the time-
domain.

Fig. 3 presents the circuit and control schema,which
illustrates the key aspects of our simulation setup. This
allows us evaluating the response performance of the system
in a broader environment. Here, we can also incorporate
additional elements, such as input/output disturbances, or
consider unknown parasites in the converter among oth-
ers. In order to achieve this, we have once more utilized
TDS-Control to compute all of the characteristic equa-
tion’s roots using the controller values that the algorithm
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Fig. 3. Closed-loop simulation platform in PLECS/PLEXIM of a 100W
synchronous boost converter with step-up conversion ratio of 48V-120V.

produces. We see in Fig. 4 that s0 is correctly assigned
for each choice, as well as the matching output voltage
response of the converter, by scanning s0 in the range
[−10000,−5000].

Fig. 4. Roots distribution based on PPP and system’s response with various
s0 asignments. Computation of the roots is with TDS-Control.

A. Performance Summary

To gauge system’s performance, we apply a step change in
the input voltage. This example illustrates a specific scenario
in which the converter might be used, such as in renewable
energy applications where energy harvest is intermittent.
Our primary goal is to evaluate how our controlled system
responds to abrupt voltage shifts; it is important to note that
we have considered an ideal case in terms of efficiency. To
achieve this, we introduced three different initial values for
s0 in [−5000,−10000,−15000]. The resulting data for each
value is summarized in Table III.

We are interested in analyzing the response times and
oscillations (if any) of the output voltage. With this aim,

TABLE III
CONTROLLER GAINS FOR THE SYNCHRONOUS BOOST CONVERTER.

Dominant Controller Gains
Root kp ki kr h

s0 =−5000 1.1×10−4 2.9 8.4×10−4 1.5×10−4

s0 =−10000 0.01 10.4 0.01 2.6×10−5

s0 =−15000 0.07 19.4 0.06 8.7×10−6

we set the system equilibrium point at X2 = E/(1−D) =
120V. We also consider that E can exhibit variations, from
48V to 58V at 10ms, and back at 20ms. The results are
presented in Fig. 5. As in the previous (explanatory) example,
we have observed that an assignment of s0 further to the
left in the complex plane results in faster convergence
rates. Additionally, we noticed a significant reduction of
overshoot/undershoot associated with the considered abrupt
changes of the input voltage.

On the other hand, the control signal, which has a satura-
tion block to limit its values between 0V and 1V for safety
reasons, remains within these limits at all times maintaining
the system in a linear regime. However, as s0 increases,
we observe a ripple in this signal due to the substantial
growth of the controller parameters at different choices of
s0. Finally, Table IV quantitatively presents the following
performance indices: Mp-Maximum overshoot; tss-Settling
time; tr-Rise time; IAE-ntegral of the absolute magnitude of
the error; ISE-Integral square error. These results highlight
the qualitative observations from Fig. 5 and complement
the understanding of the system’s behavior and its response
under input voltage steps.

Fig. 5. Comparative of the voltage outputs x2(t) considering several
assignments of s0 and the corresponding control signals produced by the
PIR controller. Simulations based on the platform shown in Fig. 3.

V. CONCLUSION

Considering a second-order non-minimum phase system,
this paper presents an extended design methodology using
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TABLE IV
CLOSED-LOOP SYSTEM PERFORMANCE.

Dominant Performance Indices
Root Mp [V] tss [ms] tr [ms] IAE ISE

s0 =−5000 152.77 2.7 4.2 0.27 12.20
s0 =−10000 137.14 0.9 1.2 0.08 3.28
s0 =−15000 134.77 1.0 0.6 0.05 2.16

partial pole placement for tuning a delay-based controller
known to as the PIR controller. The effectiveness of the
tuning rule is illustrated through a detailed analysis and a
design example conducted in a power electronics simula-
tion platform. The performance indices, such as maximum
overshoot, settling time, rise time, integral of the absolute
magnitude of the error, and integral square error, further val-
idate the benefits of these types of controllers with artificial
delays. Future work can extend the proposed tuning rule to
larger classes of non-minimum phase systems, such as higher
order systems or systems with multiple inputs and outputs,
and explore its performance in different scenarios.
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