
Energy-conserving discretization of the one-dimensional shallow water
equations in material-fixed coordinates

Luca Mayer1, Jens Wurm2 and Frank Woittennek3

Abstract— A generalized approach to the spatial discretiza-
tion of the one-dimensional shallow water equations with
moving boundary and an arbitrary cross-section is developed.
Material-fixed coordinates are used to effectively cope with the
moving boundary. The methodology involves the discretization
of the Lagrangian on a material-fixed grid and the application
of different quadrature schemes to derive finite-dimensional
models. The proposed scheme explicitly considers mass conser-
vation as an additional constraint, resulting in systems of semi-
explicit differential-algebraic equations (DAEs). The particular
structure of these DAEs depends on the chosen quadrature
scheme and therefore requires slightly different methods for
the numerical implementation. These methods are discussed on
the basis of three examples, which are compared in simulation
studies.

I. INTRODUCTION

The well-known Saint-Venant equations have long been
instrumental in the modeling of shallow water flow in open
channels. These equations find application in a multitude of
scenarios, including the analysis of open-channel problems
such as irrigation channels with varying cross-sections of
riverbeds [3], [6], [4]. Furthermore, they have been extended
to address unique challenges, such as the modeling of snow
avalanches [13], [10]. In recent studies [7], [17], the focus
has shifted towards control design for shallow water waves
within tubes that feature a dynamic boundary and arbitrary
cross-sections. These control strategies often require the use
of observers to deduce the complete system state from se-
lected point measurements. A crucial aspect of constructing
these observers is the availability of accurate numerical
models suitable for real-time implementation. These models
depend on an appropriate discretization of the original spa-
tially distributed model. To ensure that the stability properties
of the initial model are preserved, energy-based methods are
advantageous when deriving such approximations.

In [8], a family of approximated finite-dimensional mod-
els was introduced, aiming to retain the port-Hamiltonian
structure of open systems models. This approach utilized
conservative generalized leapfrog schemes with consistent
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orders and adopted a finite volume perspective on staggered
grids.

The present contribution builds upon these foundations and
focuses on the development of higher-order approximation
schemes for a system akin to that considered in [18].
Specifically, we explore a boundary-actuated 1D shallow-
water model with a moving boundary and an arbitrary cross-
section. To address the challenges posed by the time-varying
spatial domain in this model, we opt for a formulation
using material-fixed coordinates, also known as Lagrange
coordinates. Notably, the distributed shallow-water model
can be derived using the principle of least action [15], [18],
[11] , making both the action functional and the Lagrange
functional key components in the derivation of our lumped
approximation, i.e., the lumped parameter model. In particu-
lar, we discretize the Lagrange functional concerning space
on a material-fixed grid and proceed to derive the finite-
dimensional model by applying an appropriate quadrature
scheme. Given the importance of mass conservation, this
approach results in a system of semi-explicit differential-
algebraic equations.

In contrast to [13], higher-order quadrature order quadra-
ture schemes are introduced in [11]. Although this method
is expected to provide more accurate numerical approx-
imations, it leads to more complicated nonlinear DAEs.
Therefore, different approaches to numerically solve the
resulting DAEs are investigated in this paper.

The contribution is structured as follows: In section II,
the model is introduced in both Eulerian and Lagrangian
coordinates. Subsequently, spatially discrete models in the
Lagrangian framework are then derived with a formulation
compatible with arbitrary quadrature schemes. Section III
examines the numerical solution of the resulting energy-
conserving semi-discrete DAEs using three examples. Sec-
tion IV provides a comparison of the derived models and
their respective solution methods through simulations. Fi-
nally, section V contains a brief discussion and outlook on
future research.

II. MODELING

A horizontally oriented tube is considered, as depicted in
Figure 1, which is partially filled with a liquid. The tube
has a total length L and a circular cross-sectional area with
radius r. A moving piston is positioned at z = l(t) opposite
to the fixed wall at z = 0, altering the filled length l(t) of the
tube. The piston velocity l̇(t) serves as the input u(t) to the
system. One-dimensional shallow water models in Eulerian
(spatially-fixed) and Lagrangian (material-fixed) coordinates
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are examined, with the Lagrangian formulation being derived
using variational principles.

A. Eulerian coordinates

The dynamics of the system under consideration can
be described by the one-dimensional Saint-Venant equa-
tions in spatially-fixed coordinates1, also named Euler
coordinates[16],

0 = A′(h) (∂t + v∂z)h+A(h)∂zv (1a)
0 = g∂zh+ ∂tv + v∂zv, (1b)

with the water level h and the mean horizontal velocity
v of the fluid constituting the two distributed variables
(z, t) 7→ (h, v) ∈ C1(Ω,R2) on the domain Ω = {(z, t)| t ∈
R+, z ∈ [0, l(t)]}. Therein, l(t) denotes the position of the
piston, whose derivative serves as the input u(t). Moreover,
A(h) with A ∈ C2 ([hmin, hmax],R) strictly monotonically
increasing is the portion of the cross-sectional area covered
by the fluid, and g is the gravitational acceleration. The

L

0

l(t)

r

h

z

Fig. 1. Schematic of the considered setup.

boundary conditions (BCs)

v(0, t) = 0 and
∫ l(t)

0

A(h(z, t)) dz = VT (1c)

of the partial differential equation (PDE) result from the fact
that the velocity at the fixed boundary is zero and the total
volume VT of the fluid within the tube has to be constant2.
Together with (1a) the second BC in (1c) implies (cf. [7] for
details)

v(l(t), t) = l̇(t) = u(t). (1d)

For the case of a circular cross-section A(h) is given by the
area of a circular segment with the radius r:

A(h) = r2 arccos

(
1− h

r

)
− (r − h)

√
2rh− h2,

A′(h) ··=
dA

dh
(h) = 2

√
2rh− h2.

1See also [7] for a derivation of the model for the particular system under
consideration.

2Discussion of well posedness of the above model is beyond the scope
of the contribution. However, note that under additional assumptions,
i.e., continuously differentiable initial data, corresponding to subcritical
initial flow, and continuously differentiable input t 7→ l̇(t), compatible
with the initial conditions, local existence and uniqueness can be shown
by integration along the characteristics (see, e.g., [2] for the underlying
techniques).

For this representation, the kinetic energy T (h(·, t), v(·, t))
and the potential energy U(h(·, t)) at time t are given by

T (h(·, t), v(·, t)) = ρ

2

∫ l(t)

0

A(h(z, t))v2(z, t) dz, (2)

U(h(·, t)) = ρ g

∫ l(t)

0

∫ h(z,t)

0

ζA′(ζ) dζ dz, (3)

wherein ρ denotes the mass density of the medium.

B. Lagrangian coordinates

By introducing the independent variable s ∈
[
0, l̄
]
, the

system variables

Z(s, t) = z (4a)
∂tZ(s, t) = v(Z(s, t), t) =·· V (s, t) (4b)
H(s, t) = h(Z(s, t), t) (4c)

are transformed into a material-fixed frame [1] constituting
the two distributed variables (s, t) 7→ (H,V ) ∈ C1

[
Ωℓ,R2

]
on the domain Ωℓ =

{
(s, t)| t ∈ R+, s ∈

[
0, l̄
]}

. Therein, s
corresponds to a particular fluid element located at z = s in
a given reference equilibrium associated with a particular
piston position l̄. Applying (4) to the mass conservation
equation (1a)

0 = A′(H(s, t))∂tH(s, t) +
A(H(s, t))

∂sZ(s, t)
∂s∂tZ(s, t)

= ∂t (A(H(s, t))∂sZ(s, t))

and taking into account the reference configuration leads to
the mass conservation equation in material-fixed coordinates

A(H(s, t))∂sZ(s, t) = A0, A0 =
VT

l̄
. (5a)

Moreover, applying the transformation (4) to the momentum
balance (1b) yields

0 = ∂tV (s, t)− g

A0
A(H(s, t))∂sH(s, t). (5b)

The boundary conditions in (1c) translate into

Z(0, t) = 0, Z(l̄, t) = l(t), (5c)

while the control input is given by ∂tZ(l̄, t) = l̇(t) =·· u(t).
Finally, the kinetic energie T (V (·, t)) and the potential

energie U(H(·, t)), which have been introduced in (3), can
be rewritten as

T (V (·, t)) = ρ

2

∫ l̄

0

A0V (s, t)2 ds, (6a)

U(H(·, t)) = A0ρ g

∫ l̄

0

u(H(s, t)) ds, (6b)

u(h) =
1

A(h)

∫ h

0

ζ dA(ζ). (6c)
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C. Energy conserving discretization

Within this section, energy-conserving approximations of
the model equations are derived, employing the principle of
least action. The main motivation for these discretization
schemes is the following result borrowed from [18], [11]
and being mainly a restatement of the earlier result [15] in
material fixed coordinates. The equations of motion (5) result
from the first-order stationary conditions deduced from

δ

∫ τ

0

L̄(H(·, t), Z(·, t), ∂tZ(·, t), λ(·, t)) dt = 0

where the integrand

L̄(H,Z, ∂tZ, λ) = T (V )− U(H) + C(H,Z, λ) (7)

corresponds to the Lagrangian

L(H,V ) = T (V )− U(H)

augmented by the constraint term

C(H(·, t), Z(·, t), λ(·, t)) =

ρA0

∫ l̄

0

λ(s, t) (A0 −A(H(s, t))∂sZ(s, t)) ds
(8)

obtained by adjoining the conservation of mass (5a) via the
Lagrange multiplier λ(s, t). To obtain the desired spatially
discrete models, the Lagrangian (7) is approximated using
different quadrature schemes. In order to facilitate this ap-
proximation, the spatial domain is divided into N intervals
of equal length ∆s

si = i∆s, sN = l̄, ∆s =
l̄

N
, i = 0, . . . , N

with the system variables in z = (z0, . . . , zN )ᵀ, h =
(h0, . . . , hN )ᵀ, defined by

zi(t) = Z(si, t),

vi(t) = żi(t) = ∂tZ(si, t),

hi(t) = H(si, t).

Subsequently, different quadrature formulae are applied in
order to discretize the Langrange functional and the con-
straints on the above introduced grid. Applying the principle
of least action to the resulting functional delivers the desired
finite-dimensional model equations as a system of semi-
explicit DAEs. Independently of the particular quadrature
scheme applied, the kinetic energy and the potential energy
are approximated in the form

T (∂tZ) ≈ T̂ (ż) =
1

2
żᵀMż,

U(H) ≈ Û(h) = rᵀu(h),

u(h) = gρV̄T

(
u(h0), . . . , u(hN )

)ᵀ
,

with the normalized potential energy density u(h) defined
in (6) and the constant volume within one spatial element
V̄T = A0∆s. The positive vector r ∈ RN+1 and the
diagonal matrix M = ρV̄Tdiag(r) depend on the particular
scheme considered. Moreover, the constraints resulting from

the conservation of mass are replaced by a finite number Nc

of constraints of the form

0 = Gz −Hc(h), (9)

c(h) =

(
V̄T

A(h0)
, . . . ,

V̄T

A(hN )

)ᵀ

with G,H ∈ RNc×(N+1) depending on the integration
scheme considered. The latter are obtained by rewriting (5a)
in integral form∫ sj

si

A0

A(H(s, t))
ds = Z(sj , t)− Z(si, t), i, j ∈ {0, . . . , N}

for particular pairs (i, j) and applying the quadrature scheme
of interest. Adjoining these constraints to the discrete La-
grange function L̂(h, ż) = T̂ (ż) − Û(h) via the Lagrange
multipliers in λ ∈ RNc and, additionally, taking into account
the kinematic constraints z0 = 0, l = zN via the multipliers
λ̄0 and λ̄N , the variational problem to be considered for the
derivation of the finite-dimensional model is given by

δ

∫ τ

0

(
L̂(h(t), ż(t)) + λᵀ(t) (Gz(t)−Hc(h(t)))

+λ̄0(t)z0(t) + λ̄N (t)(zN (t)− l(t))
)
dt = 0.

Evaluating the variational derivatives and integrating by
parts, after some intermediate calculations, yields the finite-
dimensional formulation of the equations of motion:

Mz̈ = Gᵀλ+ e0λ̄0 + eN λ̄N (10a)
Hᵀλ = −RI(h), (10b)

I(h) = gρ

(∫ h0

0

A(ζ) dζ, . . . ,

∫ hN

0

A(ζ) dζ

)ᵀ

with R = diag(r), ei = (κ0i, . . . , κiN ) and κij being the
Kronecker delta. The model is completed by the kinematic
constraints z0 = 0, zN = l and the mass-conservation (9).
Note that the Hamiltonian

Ĥ(h, ż) =
∂L̂
∂ż

(h, ż)ż − L̂(h, ż) = T̂ (ż) + Û(h),

associated with the above-defined variational problem, satis-
fies

d

dt
Ĥ(h(t), ż(t)) = −λ̄N l̇(t).

In particular, for a constant position of the piston, energy
conservation is retained in the approximation.

III. NUMERICAL SOLUTION

The numerical solution strategy of the resulting DAEs
depends not only on the chosen approximation method, but
also on the number of constraints. Based on the equations of
motion (10) including the associated constraints (9), several
solution paths are examined in this section using three
different quadratures as examples, namely the trapezoidal
rule, Simpson’s rule and Simpson’s 3/8 rule. Independent of
quadrature and numerical solution, the reference conditions
are as follows: The system is in a steady state, i.e. a
constant height profile, zero fluid velocity, hence a spatial
discretization with equal step size.
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A. Trapezoidal rule

First, the trapezoidal approximation of the Lagrangian (7)
is examined. This procedure is illustrated in Fig. 2, where
the green lines show the approximation within the schematic
representation of the spatial domain for each spatial element.
By applying this quadrature to the spatial discretization

z
z0 z1 z2 z3 z4 z5 z6

Fig. 2. Approximation of the Lagrangian using the trapezoidal rule with
N = 6 volume elements.

scheme from the Section II-C, the matrices occuring in the
model equations (9) and (10) read (Nc = N):

rᵀ =
1

2
(1, 2, . . . , 2, 1), (11a)

G = (Gij)i=1,...,N,j=0,...,N , (11b)
H = (Hij)i=1,...,N,j=0,...,N , (11c)

where the entries of G and H are given by:

Gij = −κ(i−1)j + κij ,

Hij =
1

2
(κ(i−1)j + κij).

With this in mind, the equations of motion and the constraints
now take the form

f(λ) = M−1Gᵀλ = v̇, (12a)
g(h, z,λ) = Gz −Hφ = 0, (12b)

using the composition

φ = c ◦ I−1(−R−1Hᵀλ) (12c)

formed by (9) and (10b). The inverse function I−1 is eval-
uated numerically in advance for sufficiently many values
for I(h) from the interval [0, 2r] and interpolated during the
simulation. The necessity of this composition is given by
the number of constraints Nc and the dimensions of G or
H . In order to solve (12), index reduction with the use of
differentiation is applied (see e.g. [14]). Therefore, (12b) can
be rewritten as

ġ(h, z,λ) + Sg(h, z,λ) = 0 (13)

with its derivative

ġ(h, z,λ) = Gż +HCh (RIh)
−1

Hᵀλ̇, (14)

the partial derivatives of the composition (12c) as diagonal
matrices

Ch = diag

(
−V̄T

A′(h)

A(h)2

)
,

Ih = diag (ρgA(h)) ,

and the Hurwitz matrix S ∈ RN×N so that the solution of
(13) converges against (12b). By substituting (14) in (13),
the dynamics of the Lagrange multiplicators are given by

λ̇ = −(HCh (RIh)
−1

Hᵀ)−1 (Gż + S(Gz −Hφ)) .

Consequently, λ is part of the system state and is used to
integrate (12a).

B. Modified composite Simpson’s rule

The next approach is a modified composite Simpson’s
rule approximation of the Lagrangian (7). Similar to the
trapezoidal rule, the red lines show the Simpson’s rule
approximation in Fig. 3. Therein, for even N , the spatial
domain is approximated using the composite Simpson’s rule
applied to N/2 consecutive intervals of length 2∆s. Secondly,
the same procedure is used to approximate the integral
over the interval [∆s, (N − 1)∆s], while the integrals over
the boundary intervals [0,∆s] and [(N − 1)∆s,N∆s] are
approximated using the trapezoidal rule, displayed in green
color. This approximation also works for an odd number of
elements N , where the first iteration is performed up to the
N−1 element and the second iteration is shifted accordingly.
Finally, the approximation is calculated as the arithmetic
mean of both approximations [11]. Using the described and

z
z0 z1 z2 z3 z4 z5 z6

Fig. 3. Approximation of the Lagrangian using Simpson’s rule with N = 6
volume elements.

in Fig. 3 illustrated approximation, the matrices occuring in
the model euqations read (Nc = N + 1):

rᵀ =
1

12
(5, 13, 12, . . . , 12, 13, 5), (15a)

G = (Gij)i,j=0,...,N , (15b)
H = (Hij)i,j=0,...,N , (15c)

where the entries of G and H are given by i = 1, . . . , N−1,
j = 0, . . . , N :

G0j = κ1j − κ0j ,

Gij = κ(i+1)j − κ(i−1)j ,

GNj = κNj − κ(N−1)j ,

H0j =
1
2 (κ0j + κ1j),

Hij =
1
3 (κ(i−1)j + 4κij + κ(i+1)j),

HNj =
1
2 (κ(N−1)j + κNj).

The equations of motion and the constraints can be written
as

f(λ) = M−1Gᵀλ = v̇, (16a)
g(h, z,λ) = Hᵀλ+Rφ = 0, (16b)

with the composition

φ = I ◦ c−1(H−1Gz) (16c)

formed by (9) and (10b). Given that G,H are invertible and
therefore regular matrices, solving (16) is straightforward.
The only nonlinearity to be evaluated within this procedure
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is the inverse function c−1 which is evaluated numerically
in advance for sufficiently many values from the interval
[0, 2rπ] and interpolated during the simulation.

C. Modified composite Simpson’s 3/8 rule

The last example uses a modified composite Simpson’s 3/8
rule to approximate the Lagrangian (7). In Fig. 4, this approx-
imation with different quadratures is shown schematically.
The blue lines indicate the approximation with Simpson’s
3⁄8 rule. The green and red lines represent, as before, the
trapezoidal and Simpson’s rule, respectively. In the first

z
z0 z1 z2 z3 z4 z5 z6

Fig. 4. Approximation of the Lagrangian using Simpson’s 3/8 rule with
N = 6 volume elements.

step, the spatial domain is approximated using the com-
posite Simpson 3/8 rule for consecutive intervals of length
3∆s. In the next two iterations the successive intervals are
shifted accordingly. The remaining boundary elements are
approximated according to their consecutive length using the
trapezoidal rule for ∆s or Simpson’s rule for 2∆s (cf. Fig.
4). Finally, the approximation is calculated as the arithmetic
mean of all three approximations. Within this example, the
matrices occuring in the model euqations read (Nc = N+2):

rᵀ =
1

72
(29, 80, 71, 72, . . . , 72, 71, 90, 29), (17a)

G = (Gij)i=0,...,N+1, j=0,...,N , (17b)
H = (Hij)i=0,...,N+1, j=0,...,N , (17c)

where the entries of G and H are given by i = 2, . . . , N−1,
j = 0, . . . , N :

G0j = κ1j − κ0j ,

G1j = κ2j − κ0j ,

Gij = κ(i+1)j − κ(i−2)j ,

GNj = κNj − κ(N−2)j ,

G(N+1)j = κNj − κ(N−1)j ,

H0j =
1
2 (κ0j + κ1j),

H1j =
1
3 (κ0j + 4κ1j + κ2j),

Hij =
3
8 (κ(i−2)j + 3κ(i−1)j + 3κij + κ(i+1)j),

HNj =
1
3 (κ(N−2)j + 4κ(N−1)j + κNj),

H(N+1)j =
1
2 (κ(N−1)j + κNj).

Preliminary mathematical preparations are required before
the resulting DAEs take a form akin to the previous exam-
ples. This need arises from the dimensions of G and H ,
resulting from the number of constraints Nc = N + 2 (cf.

Fig. 4). Let vᵀ be an annihilator such that vᵀH = 0, the
constraints (9) and its derivative read

vᵀGz = vᵀHc(h) = 0,

vᵀGz̈ = 0. (18)

Subsequently, by substituting (18) in (10a)

vᵀGMz̈ = vᵀGGᵀλ = 0, (19)

the equations of motion and the constraints can be stated as

f(λ) = M−1Gᵀλ = v̇, (20a)

g(h, z,λ) =

[
Hᵀ

vᵀGGᵀ

]
λ+

[
RI(h)

0

]
= 0, (20b)

where the constraint is formed by (19) and (10b).

IV. SIMULATION STUDY

In this section, the three discrete models of trapezoidal
(12), modified composite Simpson’s (16) and modified com-
posite Simpson’s 3/8 (17) rule are compared by simulation.
Therein, the model in material-fixed coordinates approxi-
mated using the finite-difference method (FDM) w.r.t. space
is used as benchmark. Moreover, an additional damping term
as described in [18] was considered for all models (cf. Tab.
I). Therefore, the variation of the Lagrangian is extended by
the virtual work

δW(Z, ∂tZ) =

∫ l̄

0

F (∂tZ(s, t)) δZ(s, t) ds

due to the friction with a force density F(∂tZ(·, t)) given
by

F(∂tZ(·, t)) = Df∂
2
s (∂tZ(·, t)) = Df∂

2
sV (·, t).

This results in an approximation

Fi(żi(t)) = Df

(
żi+1(t)− 2żi(t) + żi−1(t)

∆s

)
(21)

to be considered in the right-hand side of (10). Fig. 6 shows
the four described models for a polynomial transition of
the piston. Therein, the fluid height h(0, t) at the fixed
boundary and h(l(t), t) at the moving boundary, the energy
H(t) as well as the position l(t) and the velocity l̇(t) of
the piston are shown. As expected, the comparison of the
wave propagation velocities and the height profiles at both
system boundaries between the the models leads to similar
results. However, with increasing polynomial degree in the
quadrature scheme, higher oscillating modes occur, and the
damping term needs to be chosen accordingly to maintain
accuracy in integration. Furthermore, it can be observed that
the total energy of the considered models decreases with
time only due to the implemented damping, whereas the
total energy of the FDM method additionally experiences
a numerical damping, similar to fully discrete methods e.g.
the Preissmann scheme [7].
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Fig. 5. Simulation results for a planned polynomial transition of the
piston from zN (0s) = 400mm to zN (3,5s) = 764mm in 3,5s, which
corresponds to a change of the fluid level starting from an initial height
h(0) = 40mm to h(3,5s) = 25mm. The number of spatial discretization
points is N = 10 for all models.

FDM Trapezoidal Simpson Simpson 3/8

Df 0,01 0,03 0,05 0,05

TABLE I
DAMPING TERMS USED IN SIMULATION

Python 3.10.12 and the latest NumPy3 libraries were
used to run the simulations. As the implementation of the
proposed schemes is still to be optimized and the total
runtime of the simulation strongly depends on the parameters
chosen for the underlying adaptive Runge-Kutta schemes,
total computation times presented below are of limited value.
However, they show that, although required time for the
energy-based methods is significantly higher than for a sim-
ple finite-difference scheme (cf. Tab. II), at least the modified
composite Simpson’s rule allows for real-time simulation
with the chosen resolution. This efficiency is attributed to

FDM Trapezoidal Simpson Simpson 3/8

N = 6 0,26s 4,47s 5,41s 6,76s

N = 10 0,54s 27,31s 8,54s 95,07s

TABLE II
COMPUTATION TIME WITH INCREASING RESOLUTION4

the rather simple structure of the the resulting semi-explicit
DAE. In contrast, the other two approximation schemes
require more sophisticated computational schemes, including
techniques like index reduction by differentiation.

V. CONCLUSION AND OUTLOOK

Energy-conserving semi-discrete approximations of the
shallow-water equations with moving boundary have been

3NumPy 1.26.4
4Specifications of the PC used for simulation:
• CPU: Intel® Core™ i5− 10210U @ 1,60GHz × 8
• RAM: 16,0G

derived. Since the solution of these approximations depends
on the chosen approximation method or the number of
constraints, three different numerical solution paths have
been discussed and compared by low-resolution simulations.
In addition to higher resolution simulations, these models
will be compared with alternative numerical methods such
as the Godunov scheme [5], pseudo-spectral approximations
[12], or the method of characteristics. In the same way, be-
sides spatial discretization, time integration using variational
integrators [9] will be part of future research. Moreover,
an open-loop control based on the shallow water equations
in material-fixed coordinates will be derived and simulated
using the methodology and numerical solutions presented in
this paper.
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