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ABSTRACT 
 
We address the problem of optimizing the performance of a dynamic system consisting 
of multiple interacting autonomous vehicles while satisfying hard safety constraints at all 
times. Implementing an optimal control solution incurs a high computational cost, which 
limits it to simple linear dynamics, simple objective functions, and ignoring noise. 
Control Barrier Functions (CBFs) may be used for safety-critical control at the expense 
of sub-optimal performance. We will review the basic theory of CBFs and present a real-
time control framework that combines vehicle trajectories generated through optimal 
control with the computationally efficient CBF method providing safety guarantees. A 
tractable optimal solution is first obtained for a linear or linearized system, then we 
optimally track this solution while using CBFs to guarantee the satisfaction of all state 
and control constraints. This Optimal Control and CBF (OCBF) framework can be 
adapted to allow complex objective functions, noise, and nonlinear dynamics (possibly 
unknown). We will show how OCBF controllers can be applied to autonomous vehicles 
in transportation systems where the objective is to jointly minimize the travel time and 
energy consumption of each vehicle subject to speed, acceleration, and speed-dependent 
safety constraints. We will also discuss how to overcome the problem of unknown 
vehicle dynamics using event-driven controllers, including mixed traffic conditions 
where autonomous vehicles share a traffic network with human-driven vehicles. 
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