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I. INTRODUCTION

Accurately modelling the dynamics of heavy duty vehicles
such as trucks is essential for safe autonomous navigation.
The dynamical model needs to capture complex system
behaviour in various weather and road conditions as well as
under different load configurations. This abstract outlines the
integration of Physics-informed Long Short-Term Memory
(PI-LSTM) networks as dynamical models within the context
of motion planning and control for autonomous vehicles. By
leveraging the predictive capabilities of LSTMs to model
complex dynamics, and the generalizability imposed by
adding the physics constraints in the loss function, we pro-
pose a framework for generating more efficient and reliable
predictions that are tailored for motion planning and control.

The system identification problem for vehicle modelling
aims to solve the following ordinary differential equation:

ẋ = f (x,u) (1)

Depending on the formulation of f , existing methods can
be classified roughly into three main categories: classical
methods, learning methods, and residual methods.

Classical (white-box) modelling solves the problem of sys-
tem identification using physics-based principles. In general,
these models rely on simplifying assumptions to model the
system. Although simple and efficient, they suffer from some
major problems. First, many properties of the vehicle (or the
road) may be quite difficult to model. For example, modelling
how the road friction and aerodynamic forces affect the sys-
tem is not an easy task. Thus, these classical approaches may
be inaccurate in modelling complex physical phenomena due
to these assumptions. Second, these models contain many
parameters which describe the system characteristics (e.g.:
mass, moment of inertia, friction coefficient, etc...) that are
either hard to identify or varying due to changes in the system
configuration (different loads affect mass and inertia, and
weather conditions affect road friction.)

Learning-based (black-box) methods model the system
entirely from observations. These methods prove to be quite
successful in modelling complex physical phenomena. For
example, [1] used Gaussian Processes (GPs) in a MPC
framework to control a quadrotor. However, GPs are known
to scale badly with the number of data points. Neural
networks have also been used in system modelling. For
example, [2] modelled a quadrotor dynamics in the context of
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Fig. 1. Tractor and semi-trailer truck. Courtesy of Scania CV AB.

motion control, and [3] used LSTMs to predict the movement
of battleships in extreme sea states. Although these methods
model the system well, how they generalize to different data
distributions remains an un-explored direction.

Residual (grey-box) methods combine external knowledge
and observations to enhance the learning as well as the gen-
eraliazability of the identified models. For example [4] used
physics-inspired temporal convolutions to learn aggressive
maneuvers of a quadrotor in various flight regimes, and [5]
used a nominal (physics-based) model and trained a neural
network to learn the residuals of this nominal model. In this
work, we explore further in this direction and use Physics-
Informed LSTMs (PI-LSTMs) as dynamical models in the
context of planning and control.

II. METHODOLOGY

In this work, the goal is to approximate Eq. 1 using
physics-informed LSTMs, and leverage past states and future
inputs to predict the vehicle’s full dynamic state in a fixed
time horizon T . More formally, the system future states’
trajectory can be given by

X̂+ = fNN(X−,U,θNN) (2)

where X− = [x1,x2, . . . ,xn] is the matrix of past system
states, X̂+ = [xn+1,xn+2, . . . ,xn+T ] is the matrix of fu-
ture system states predicted by the neural network, U =
[u0,u1, . . . ,un+T−1] is the matrix of the system inputs, θ is
the neural network parameters, and FNN is the neural network
function. We approximate f by the encoder decoder LSTM-
based architecture shown in Fig. 2. The idea is to provide
past state-input trajectory to the encoder LSTM to output an
encoded state. The encoded state is then used to initialize
another LSTM (the decoder.) The decoder is also provided
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Fig. 2. Our architecture consists of two LSTMs: an encoder (green) and a
decoder (blue). The encoder takes past state-input trajectory and outputs an
encoded state vector (denoted in red). The decoder is then initialized using
this state and predicts future states.

with future actions as input, and its goal is to predict the
system’s future states over a fixed time horizon T .

Training of the network. To train the network, we need
to optimize its parameters with the goal of minimizing the
loss function, and since we need to make sure that the
network generalizes outside its training data, we add physics
constraints as well. Thus, the loss function is as follows:

L︸︷︷︸
Total Loss

= ||Ẋ+− X̂+||22︸ ︷︷ ︸
data loss

+λ ||∇ fNN − f ||22︸ ︷︷ ︸
Physics Loss

(3)

where λ denotes how much we trust the physics-based (the
nominal) model. If the nominal model is of high fidelity, we
set λ to a high value, otherwise, we set λ to a small value to
allow the optimization process to explore the data landscape
more and give it higher importance. Note that the system
model goes into the physics loss. However, it is removed for
brevity. Then, the goal is to use gradient descent to find
the neural network parameters θ that minimizes the loss
function:

θNN = argmin
θ

L (4)

III. EXPERIMENTAL SETUP AND RESULTS

We run our system against real world data collected from
a truck with a trailer (see Fig. 1.) Training data consisted
of 9 hours, and test data consisted of 1 hour and was
collected throughout 2023. The training data was then split
into training and validation with percentages of 90% and
10% respectively. All experiments were run on a workstation
with a single Quadro RTX 4000 GPU and an Intel Xeon 12
core CPU. Both the encoder and the decoder had a hidden
state vector with a dimensionality of 32 each. Since the state
vector is of 5 dimensions, a 5-neuron feed-forward layer has
also been added as a final prediction layer in the decoder.
The goal is to predict the states of the system in a 10-second
horizon using the future inputs and the state-action history
trajectory. We found that a history of 1 second is enough and
the system didn’t improve any further by providing longer
history trajectories. The system was sampled at 50 Hz. For
data processing, only a low pass filter was applied to the

signals before the training process. The system equation used
in the loss term in Eq. 3 is a double track tractor-trailer model
found in [6]. For the training parameters, we train the model
for 1000 epoch with a batch size of 512. The learning rate
is set to 0.003 and is decreased by one-third every one-third
of the training length.

PI-LSTM (ours) PI-TCN Nominal
R2 Score .87 .74 .58

MSE Loss .01 .12 1.26

We compare our model against a nominal model and a
temporal-convolution physics-inspired neural network (PI-
TCN) [4]. For the training loss, only the MSE (Mean-
Squared Error) is used, while for evaluation, all the methods
were evaluated using both mean-squared error as well as R2

score as given by Eq. 5:

R2 = 1− ∑(x+− x̂+)
∑(x+−µ)

(5)

where µ is the mean of the groud truth. It is worth mention-
ing that we use R2 as it provides a normalized version of
MSE that doesn’t depend on the scale of the target values.
Results (Table. III) show the average MSE as well as R2 score
for both training and test data for all different methods. The
proposed approach outperforms the other baselines in both
MSE & R2 Score.

IV. CONCLUSION & FUTURE WORK

This work demonstrates the potential of using LSTMs to
enhance the accuracy and efficiency of dynamical models in
the context of planning and control. By accurately modeling
complex dynamics, LSTMs enable more reliable and opti-
mized predictions, paving the way for their broader adoption
in industrial and research applications. For future work, we
study the interpretability of data-driven dynamical models as
well as their application in other domains such data-driven
simulations.
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