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I. INTRODUCTION

With growing availability of 5G connectivity, we are
looking at more and more applications that can reap the
benefits of this new generation of wireless connectivity. One
promising feature is that connected devices will be able to
offload heavy processes to edge computers over the network
and can thus be simplified while achieving the same, or bet-
ter, performance. The 5G Alliance for Connected Industries
and Automation (5G-ACIA) highlights mobile robots as a
key use case for Industrial 5G [1], and in particular the
possibility to offload real-time localization as an important
use case for industrial 5G edge computing [2].

At the same time, offloading localization means the robots
will have to stream sensor data over the network, which will
require thoughtful allocation of the available bandwidth to
avoid starving other network users. A recent survey [3] indi-
cates a lot of interest in edge computing resource scheduling,
including the scheduling of bandwidth. Furthermore, in [4]
the importance of co-design for dynamic resource alloca-
tion is highlighted, so that the performance of the robotic
tasks can be taken into consideration when allocating the
resources.

In the case of offloaded localization, an important per-
formance factor to consider is localization uncertainty. This
uncertainty has to be taken into account when controlling the
robot in safety-critical scenarios. This has been addressed
in some of the recent works on so-called perception-based
control [5], [6], [7], [8], where different safe control methods
were proposed that compensate for uncertainties in state due
to perception-based state estimation.

This indicates that localization uncertainty has a strong im-
pact on how the robot is controlled, which is also illustrated
in the example shown in Fig. 1. In the figure, three robots are
navigating in different parts of the same environment, and at
the highlighted time instance, bandwidth is reallocated such
that the robots closer to the forbidden area get more network
resources, which should help them reduce their localization
uncertainties and navigate safely.
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Fig. 1: Three robots navigating in a warehouse, each with
individual uncertainty in their estimated state and navigation
tasks that require different levels of uncertainty to complete
safely. One robot is passing by a forbidden zone, represent-
ing an obstacle detected by external sensors, which must
therefore be avoided based on map position, while the other
robots are able to sense their closest obstacles with local
sensing.

A. Contribution

In Fig. 2, a system architecture is shown, in which we
propose to introduce a feedback mechanism for bandwidth
allocation based on the uncertainties reported by the local-
ization algorithms. Compared to the other traffic, we expect
sensor measurements will require the most bandwidth, so
this feedback mechanism can ensure the robot use only the
bandwidth they require for their task. For example, if the
navigation controller on the robot considers the localization
uncertainty when deciding a safe control input, we can
allocate the bandwidth needed for the robot to reach the goal
safely.

II. PRELIMINARY RESULTS

To investigate the impact of available bandwidth on lo-
calization uncertainty, we run localization experiments in
simulation using a TurtleBot3 Waffle. The robot is simulated
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Fig. 2: The proposed framework, with available components
marked in blue and the proposed parts of the new bandwidth
feedback mechanism in yellow.

in Gazebo and navigates using the open-source ROS2 navi-
gation stack Nav2 [9]. In terms of sensors, the robot has a
2D Lidar which it can use to first create, and then localize in,
obstacle maps. The robot also has wheel encoders, enabling
local motion estimation using wheel odometry. When local-
izing, a particle filter is used to generate a global position
estimate for the robot, combining motion tracking from
wheel odometry with scan matching of Lidar measurements
against the obstacle map.

The Lidar sensor generates laser scans at 16Hz, and we
simulate a decreased bandwidth by reducing the frequency
at which Lidar scans are sent to the particle filter. Assuming
the part of a localization algorithm that processes sensor
measurements will be offloaded, this would correspond to
reducing the rate at which sensor measurements are sent to
it. To measure performance, we calculate the uncertainty in
the position estimates reported by the particle filter, which
we will denote σ. Since the particle filter estimates are in
the form of 2D poses with covariances, we calculate σ as
the square-root of the largest eigenvalue of the covariance
matrix for the 2D position, which we denote as Σ:

σ =
√
max [λ (Σ)] (1)

In Fig. 3, the uncertainty σ(t) is shown for the same localiza-
tion experiment using different measurement frequencies. In
general, the uncertainty grows as the frequency is reduced.

III. CONCLUSIONS AND FUTURE WORK

We proposed a feedback mechanism for bandwidth al-
location based on localization uncertainty, and presented
preliminary results indicating that localization uncertainty is
affected by how often the robot can transmit its sensor data.

Fig. 3: Comparison of localization uncertainty σ(t) using
different static measurement frequencies during the entire
experiment. The upper plot shows how the uncertainty varies
during the experiment, and the lower plot shows the distri-
bution of the uncertainty measurements for each setting.

Next we want to implement the feedback mechanism, run
experiments with multiple robots, and try it in a real network.
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