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Abstract— Analyzing human gait from plantar pressure is
critical for human health. The majority of works focus on
classifying the healthy plantar pattern from unhealthy ones.
Different from previous works, we adopt a generative adver-
sarial network to produce healthy plantar pressure image for
individual patients. In this work, we do not have pairs of images
for training thus we cast the problem as an unsupervised
generative adversarial learning task. Our network benefits
from multiple components: an encoder-decoder generator, a
convolution-based discriminator, a convolution-based evaluation
network, and a new term in the loss function to preserve the
person’s gait style. Our method achieves high performance
(99.8%) on the CAD WALK databases which have patients
with hallux valgus disease.

I. INTRODUCTION

Gait is one of the most frequently used forms of human
movement during daily activity. The feet together contain
more than 50 bones, 60 joints, and 200 muscles, tendons,
and ligaments that hold them together and help us move.
Any deformation in one of the aforementioned parts can
cause disability. Thus, plantar pressure analysis has been
used years to diagnose gait movement (or pathology) [1],
[2], diabetic foot [3], skin injury [4], and Parkinson disease
[5]. Between the feet deformities, hallux valgus is a very
common pathological condition in people which causes many
disabilities [6]. In this work, we focus on hallux valgus
deformity.

The majority of work on plantar pressure analysis follows
a two-step approach. First, extracting a set of handcrafted
features and then a machine learning system is employed to
recognize the deformation class [7], [8]. Although plantar
pressure is widely used in the literature, the use of motion
capture sensors such as accelerometers has shown to be
effective [9]. For recognition, one line of research in gait
movement analysis focuses on hand-crafted features [10].
While owning to the latest trend in machine learning autoen-
coders [11], recurrent neural networks (RNN) [12], and other
deep learning methods [13], [14] have also been used for gait
classification. Among the different deep learning methods,
convolutional neural networks (CNN) have received the most
attention owing to the prosperity of CNNs in various tasks.
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Generative adversarial networks (GAN) have become a
hot research topic recently and used in various applications
by way of a two-player minimax game[15], [16], [17]. GAN
research is divided into two categories. The first is to estimate
the density either explicitly or implicitly and generate a new
sample from a noise [18]. The other group assumes a joint
probability distribution between the source and the target do-
main and the input image is transformed to the target domain
[16], [19], [20], [21]. This image-to-image translation can
be studied in a supervised and unsupervised learning setting.
In supervised learning, the pair of corresponding images in
different domains are available [16], [19]. On the other hand,
in the unsupervised learning, there are two sets of source and
target domain and there are no paired samples showing how
the image in the source domain could be translated to the
corresponding target domain [21].

Efforts on gait analysis are primarily concentrated on
building a better machine learning system. Although after
diagnosis, the clinical treatment also is very important in
the pathological process. Due to the lack of healthy plantar
pressure for patients, clinical treatment can not efficiently be
done. In this work, by designing a generative adversarial
network (GAN) based model, we were able to produce
healthy plantar pressure images for patient individuals in an
unsupervised setting. This problem can be categorized as an
image-to-image translation. A key challenge in this problem
is to learn a joint distribution of images between the source
(patients) and target (healthy people) domain.

This work can be used in the treatment process and to
inform the progression of the course for a person with a foot
deformity; with the aim of treatment being to improve the
person’s gait and achieve a healthy walking state. To this
end, we propose an encoder-decoder GAN architecture and
evaluate the model on the CAD WALK databases [22], [23].
Moreover, due to the lack of ground truth for the produced
healthy images, we used a convolutional-based network to
evaluate our model. In summary, the main contributions of
this paper are:

• To the best of our knowledge, this work is the first work
trying to produce healthy plantar pressure patterns for
patients as help for medical centers.

• Novel loss function terms to help achieve better image
quality.

• Achieving high performance on the CAD WALK
database.
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Fig. 1. Our discriminator architecture, consists of convolutional and max pooling layers followed by fully connected layers.

II. METHOD

In this section, we describe our generative adversarial-
based network to produce healthy plantar pressure images for
patients. First, we proposed an encoder-decoder architecture
for GAN to capture joint distribution between two domains.
Next, we propose a convolutional network for evaluating our
method. Below, we describe the components in detail.

A. Generative Adversarial Network

Following Goodfellow et. al [18], we define our generative
learning framework. Generative adversarial networks are a
clever way to train a model. They do this by framing the
problem as a learning problem with two sub-models and
consist of two separate neural networks. The general idea
behind these two sub-models is that it allows the generator
to produce new samples and the discriminator that attempts
to classify the samples as real or fake. Both models are
trained together, and this continues until the discriminator has
been fooled, meaning that the generator model has produced
reliable samples. In these neural networks, we have two
factors that act opposite and become stronger in competition
with each other over time. In fact, learning this framework
is like a min-max problem:

min
G

max
D

V (D,G) = EX∼pdataH
(X)

[
logD(X)

]
+ EY∼pdataP

(Y)

[
log(1−D(G(Y)))

]
(1)

where dataH and dataP are healthy and patient data sam-
ples. V , D, G, X and Y refer to Value function, Discrim-
inator, Generator, a sample image from a healthy set, and
a sample image from patient set respectively. Unlike the
original GAN paper [18], our generator does not map a fixed
prior distribution (noise) to the data distribution pX. In fact,
in this work, we are trying to learn the joint distribution
between healthy and patient data samples.

Previous studies [24] have shown that each person can be
identified by the way they walk. Motivated by this fact, we
proposed a new term in the loss function. This term tries to

preserve the patient plantar pressure style and transfer it to
the generated sample by the generator. Therefore, the GAN
loss function becomes:

min
G

max
D

V (D,G) = EX∼pdataH
(X)

[
logD(X)

]
+ EY∼pdataP

(Y)

[
log(1−D(G(Y)))

+ λ‖Y−G(Y)‖22
]

(2)

where ‖.‖ is L2 norm. In what follows, we will explain the
structure of our generator and discriminator.
Generator. Various generator structure has been used in
previous works [18], [19], [25] and it more depends on
the input data domain. Following [25], we decided to use
autoencoders for generator. Autoencoders are simple neural
architectures with strong power for extracting embedding
features. The CNN-based generators also are shown to be
very effective for having high-quality generated images [26].
Thus, we decided to combine these two networks and adopt
asymmetric autoencoder architecture. The architecture detail
is shown in Table. I. Unlike [25], To have better quality and
quicker learning, we pretrained the encoder-decoder with all
our data samples including healthy and patient individuals by
the mean square error (MSE) for error estimation function.
The generator’s weights are initialized and they will update
during training.
Discriminator. To follow generator architecture, discrimi-
nator gets input image of 32 × 48 then two convolutional
layers with 3 × 3@3 kernels follow by two 3 × 3 max-
pooling layers. At the end, two fully connected layers with
100 and 2 features respectively. Moreover, the dropout was
used between the last convolutional layer and the first fully
connected layer. The discriminator architecture also is shown
in Fig. 1.

The discriminator ingests a healthy image and the image
produced by the generator. The discriminator is responsible
for detecting whether the image produced by the generator
is healthy or not, and network training is continued until
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TABLE I
AUTOENCODER ARCHITECTURE.Conv AND TransConv STAND FOR

CONVOLUTION AND TRANSPOSED CONVOLUTIONAL LAYERS

RESPECTIVELY. ALL LAYERS HAVE KERNEL SIZE OF 3× 3 AND STRIDE

SIZE OF 1

Layer Output size # of Kernels

Encoder

Image 32× 48 -
Conv1 30× 46 6
Conv2 28× 44 16
Conv3 26× 42 26

Decoder

Embed 26× 42 26
TransConv1 28× 44 16
TransConv2 30× 46 6
TransConv3 32× 48 1

the network reaches its equilibrium by minimizing the loss
function in Eq. 2.

B. Evaluation Network

The evaluation of GANs can be considered as an effort to
measure the dissimilarity between the real distribution and
the generated distribution because there is no corresponding
ground truth. To this end, we decided to use a network to
learn both data distributions, healthy and unhealthy classes.
It means we trained a network on our original data which
can discriminate between the healthy and unhealthy data
distribution. Our GAN generates a healthy form of unhealthy
plantar pressure image. The generated image from GAN is
given to the evaluation network to predict its label. Motivated
by the success of CNNs, we propose to adopt a CNN for this
purpose with the same architecture as the discriminator in
our GAN. We also decided to train the strong baselines for
the evaluation network which has been used in the previous
plantar pressure classification works including support vector
machine (SVM) and decision tree.

TABLE II
(A) OUR GAN PERFORMANCE ON THE PATIENT TEST DATA BY USING

EVALUATION NETWORK. THE ACCURACY VALUES ARE CLASSIFICATION

ACCURACY. (B) PERFORMANCE COMPARISON BETWEEN THE

EVALUATION NETWORKS ON CAD WALK DATABASE IN TERMS OF

CLASSIFICATION ACCURACY(%).

Data Accuracy(%)
Test data 99.80

Generated data 99.52
(a)

Model Accuracy(%)
SVM with linear kernel 81.28
SVM with RBF kernel 89.31

Desicion tree 98.84
CNN 99.78

(b)

III. EXPERIMENTS AND DISCUSSION

A. Database

We evaluate our model on the CAD WALK database [22],
[23]. This database was collected over two different sessions
including healthy people and who have Hallux Valgus. For
healthy people, it contains the raw dynamic plantar pressure
measurements of 55 healthy individuals which for each
of them 24 dynamic plantar pressure measurements are
provided for both feet. It means each pixel of the image
contains the pressure value corresponding to the pressure
sensor. For the patients, it contains the raw dynamic plantar
pressure measurements of 50 individuals with Hallux Valgus
which for each individual, between 8-15 dynamic plantar
pressure measurements are provided for both feet.

B. Implementation Details

The databases we used, provide only raw plantar pressure
images with different sizes and sampling rates. To obtain
the same size for images, we supposed a fixed image size
which the size is the biggest image size in the databases.
The smaller images are simply zero-padded. In the end, All
images are resized to 32 × 48. The network weights are
initialized following the Xavier initialization [27]. We set
λ = 0.001 (see Eq. 2). We also used Adam optimizer with
a learning rate of 0.01 and decay rate of 0.5 after each 50
epochs for 20,000 iterations. For all experiments, we perform
5-fold cross-validation and report average accuracy. We used
Pytorch for implementing our model and the evaluation net-
work, and an NVIDIA RTX-2080Ti GPU for all experiments.

C. Results and Analysis

To follow the evaluation framework discussed in Sec. II-
B, we designed a convolutional network to evaluate the
performance of our GAN. To this end, we trained our
proposed method and the baselines with the same evaluation
method (5-fold evaluation). To show the superiority of CNN,
we compared it with the strong baselines in Table. II (b).
Clearly, the proposed CNN outperforms all the baselines.
Our model performs better than the SVM-based architecture
- a class of classifiers most commonly used in classification
problems.

To evaluate the effectiveness of the proposed GAN, we
generate healthy plantar pressure images for test data and
then check the accuracy of the CNN-based classifier for them
in Table. II (a). As it is shown, the generated plantar pressure
images have high accuracy and are comparable with real
images which support the effectiveness of our method.

Another common method for showing the performance
of GANs is to compare the input and output data of the
generator. The visualized results are illustrated in Fig. 2. The
first row contains the actual patient plantar pressures. The
second row is the corresponding healthy generated samples
by the generator.
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Fig. 2. Qualitative results showing the deformity plantar pressure and
corresponding healthy pattern. the first row contains plantar pressure images
from the patients and the second row has the corresponding healthy plantar
pressure.

IV. CONCLUSION

We proposed an unsupervised generative adversarial net-
work to produce healthy plantar pressure image for patients
who have hallux valgus disease. To preserve the patients’
gait style, we also proposed a new term in the loss function.
Moreover, due to problems for performance evaluation of
generative models, we proposed a CNN-based classifier and
showed that the proposed GAN works with high perfor-
mance.

In this work, we used the raw plantar pressure images as
input with no constraint. This makes our method directly
applicable to use for any kind of disease which changes the
plantar pressure distribution. One of the applications of this
work is to use in physical therapy clinics. Our method can
produce a healthy gait plantar pattern for those who have foot
disease. This helps physiotherapists to follow the treatment
process, even it shows how far the patient is from the healthy
and normal pattern.
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