
  

  

Abstract— Preoperative predicting histological grade of 

hepatocellular carcinoma (HCC) is a crucial issue for the 

evaluation of patient prognosis and determining clinical 

treatment strategies. Previous studies have shown the potential 

of preoperative medical imaging in HCC grading diagnosis, 

however, there still remain challenges. In this work, we proposed 

a multi-scale 2D dense connected convolutional neural network 

(MS-DenseNet) for the classification of grade. This architecture 

consisted of three CNN branches to extract features of CT image 

patches in different scale. Then the outputs for each CNN branch 

were concatenated to the final fully connected layer. Our 

network was developed and evaluated on 455 HCC patients from 

two different centers. For data augmentation, more than 2000 

patches for each scale were cropped from transverse section 2D 

region of interest on these patients. Besides, three-channel inputs 

including original CT image, tumor region and peritumoral 

component provided complementary knowledge. Experimental 

results demonstrated that the proposed method achieved 

encouraging prediction performance with AUC of 0.798 in 

testing dataset. 

 
Clinical Relevance—The proposed MS-DenseNet yielded an 

encouraging prediction performance for HCC histological grade 

and might assist the clinical diagnosis and decision making of 

HCC patients.  

I. INTRODUCTION 

Hepatocellular carcinoma (HCC) is the most common liver 
cancer with a high incidence of cancer-related death 
worldwide [1,2]. HCC are always associated with poor 
prognosis, such as metastasis and early recurrence. Therefore, 
it is significantly important to acquire early diagnosis and 
treatment for reducing HCC mortality. The histological grade 
of HCC has been reported strongly related to survival rate in 
clinical practice [3]. HCC patients with various degrees of 
grade can have varying prognosis and treatment strategies. 
High-grade HCC tumors have a higher risk of recurrence than 
low-grade tumors. In addition, patients with high histological 
grade generally need larger safety margins at surgical resection 
and frequent follow-up after treatment [4,5]. Accordingly, the 
preoperative accurate assessment of HCC grade is of 
tremendous value. 

 
This paper is supported by the National Natural Science Foundation of 

China (No. 81227901, 81527805); Ministry of Science and Technology of 

China (2017YFC1308701, 2017YFC1309100, 2016YFC0102600, 

2016YFA0100902, 2016YFC0103803, 2016YFA0201401, 

2016YFC0103702, 2014CB748600 and 2016YFC0103001); Chinese 

Academy of Sciences (No. GJJSTD20170004 and QYZDJ-SSW-JSC005).  
+D. Gu (gudongsheng2016@ia.ac.cn), J. Wei are with the CAS Key 

Laboratory of Molecular Imaging, Institute of Automation, Chinese 

Academy of Sciences; University of Chinese Academy of Sciences. 
∗J. Tian (tian@ieee.org) is with the CAS Key Laboratory of Molecular 

Imaging, Institute of Automation, Chinese Academy of Sciences; University 

Clinically, histological grade of HCC is generally 
determined by preoperative liver biopsy. However, this 
process to evaluate HCC grade is not widely accepted for 
several limitations, including sample error, invasiveness and 
bleeding [6]. In recent years, noninvasive method extracting 
high-dimensional features from medical imaging by utilizing 
machine learning or deep learning algorithm are widely 
applied in cancer screening, diagnosis and treatment 
evaluation [7-9]. In terms of grading classification, previous 
studies confirmed the effectiveness of medical imaging 
analysis in discriminating high-grade and low-grade in clear 
renal cell carcinoma, gliomas and pancreatic neuroendocrine 
[10-12]. Specially, researchers have also explored the potential 
of medical imaging in predicting HCC grade. Our study is 
motivated by these successful applications of deep 
convolution neural network (CNN) in medical imaging 
analysis [13-15]. Moreover, our proposed multi-scale and 
multi-channel model increased the accuracy and 
generalization in predicting histological grade of HCC. 

Overall, our contributions are as follows: 1) The proposed 
multi-scale dense connected convolution neural network (MS-
DenseNet) capture the imaging information from region of 
interest (ROI) in different resolution. This jointly learning 
process facilitated the classification for histological grade. 
Simultaneously, the incorporation of multi-scale imaging 
information can alleviate the “inter-class variations” [16], 
which exists commonly in clinical medical data. 2) Multi-
channel image patches provide the additional prior knowledge 
of tumor heterogeneity in pixel values (HPV) and 
heterogeneity in shapes (HS) individually [17]. The three-
channel inputs to our model show more effective prediction. 3) 
This is the first multicenter study to utilize CT image to predict 
the histological grade of HCC. It demonstrates the 
effectiveness of our proposed CNN model in different datasets. 

This paper is organized as follows. A detailed description 
of the MS-DenseNet is presented in Section II. Experiment 
datasets and setup are introduced in Section III. Section IV 
describes the experimental results. Section V presents the 
discussion and conclusion.  
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II. METHOD 

A. MS-DenseNet with multiple channels 

To eliminate the unnecessary noise brought by non-liver 

tissues and background, we cropped only the tissues within 

tumor region for imaging analysis. Thus, proper scale for 

cropping the patches was crucial and influential. Meanwhile, 

the raw imaging from different scanners and centers could 

vary in the resolution, which increased the inter-class 

variations. Therefore, only one-scale raw imaging patches 

might contribute limited information in the grade classification. 
It was essential to incorporate information from different 

scales into our deep neural network. Considering the limited 

3D samples, multiple 2D transverse section slice from the 

internal region of the tumor were collected for modelling. We 

cropped the 2D patches into three sizes of 32×32, 64×64 and 

128×128 pixels manually, which corresponds to the input of 

three branches of the model.  

Our MS-DenseNet is designed based on a classical 
network architecture DenseNet-121 with pretrained weight on 

ImageNet [18], which has shown excellent performance in the 
classification task of natural image. We adopted the major 
dense-block structure and modified part of layers to adapt our 
imaging. Figure 1(a) shows the details of our DenseNet. 
Specifically, the MS-DenseNet incorporated three branches 
that process patches of different scale respectively. For each 
branch, we selected the first 2, 3, and 4 dense blocks of the 
DenseNet-121 with the patch size increasing, which can keep 
the consistent feature maps after pooling. The 4 dense blocks 
consisted 6, 12, 24 and 16 basic bottlenecks respectively. The 
structure of basic bottleneck included two  convolution layers 

of kernel size 1×1 and 3×3, two rectified linear unit (ReLU) 
activation layers and two batch normalization layers, as is 
shown in Figure 1(b). The ReLU was used as a nonlinear 
activation to overcome the vanishing gradient problem and 
allow models to learn efficiently. Batch normalization layer 
was applied for reducing internal covariate shift and mitigating 
overfitting. At the end of CNN model, the three branches were 
merged through a fully connected layer to calculate the grade 
probability.  

Figure 1. Overview of the proposed method. (a) The architecture for the multi-scale DenseNet. This network contains three branches aiming at capturing features 

from three different scales and each branch takes a three-channel patch as input. The branches consist of 2, 3 and 4 dense blocks respectively and were finally 

concatenate to a fully connected layer. (b) The detailed architecture of dense block, including 6 basic bottlenecks which are composed of 2 convolution layers, 2 

batch normalization layers and 2 rectified linear unit activate layers. 
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The input patch to each CNN branch was composed of 
three channels instead of the single channel of raw image. 
Since the fine tumor boundary was delineated, the prior 
domain knowledge including HPV and HS can be 
incorporated to regularize our model [17]. The HPV 
component of the tumor was generated by setting non-tumor 
pixels inside the raw image patch to 0, while the HS 
component was characterized by setting the tumor pixels 
inside the raw image patch to 0. By setting the pixel of the area 
of no interest to 0, HPV and HS could focus on the 
heterogeneity in tumor and shape respectively. Thus, three 
channels included raw image, HPV and HS component. The 
knowledge-based three-channel collaborative CNN model 
characterized the HCC tumor from different aspects and hence 
yield complementary features. 

B. Label smoothing 

To further alleviate the overfitting and enhance the 
generalization ability of the proposed model during training 
process, we adopted label smoothing technique as 
regularization [19]. For sample 𝑖,  (𝑥𝑖 , 𝑦𝑖) had the ground truth 
distribution 𝑝  over labels 𝑝(𝑦|𝑥𝑖) and ∑ 𝑝𝐾

𝑦=0 (𝑦|𝑥𝑖) = 1. 𝐾 

is the candidate label, where 𝐾 = 0  and 𝐾 = 1  represented 
low-grade and high-grade respectively. Usually the label 
𝑝(𝑦|𝑥𝑖) would be a one-hot encoded vector where 
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Where 𝜀  is a weight factor, 𝜀 ∈ [0, 1] , and note that 
∑ 𝑝′𝐾

𝑦=0 (𝑦|𝑥𝑖) = 1. The new ground truth label was employed 

to replace one-hot label in the cross-entropy loss function as 
follows: 
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With the regularizer 𝜀𝑢(𝑦|𝑥𝑖) , we actually prevented the 
model from predicting too confidently in training dataset. The 
loss function is minimized during the model training by 
compute the gradient of 𝐿. 

III. EXPERIMENT 

A.  Dataset 

Our datasets consisted of 455 consecutive patients with 
pathological confirmed HCC from two hospitals. This dataset 
was approved by the Institutional Review Board and the 
requirement for informed consent was waived. CT images of 
artery phase was acquired from picture archiving and 
communication systems. HCC grades were retrieved from the 

pathological report. The manual segmentation for the tumor 
region was performed by an experienced radiologist slice by 
slice, using ITK-SNAP software 
(http://www.itksnap.org/pmwiki/pmwiki.php). Pathological 
diagnosis results revealed that 287 patients were high-grade 
corresponding to Edmondson grades II-III, III, III-IV and IV 
and 168 patients were low-grade corresponding to Edmondson 
grades I, I-II and II [20]. In this study, we aimed to classify the 
two-level grade in different datasets. 

B. Experimental Setup 

 To perform a reliable evaluation for the classification 

experiment, a random partition was conducted on the 455 

annotated patients: 273 patients for training, 91 patients for 

validation and 91 patients for testing at a ratio 3:1:1. We 

trained the MS-DenseNet on the training set until the loss no 

longer decreased on the validation set. Finally, the testing set 
is evaluated using the model. All the training, validation and 

testing process were performed on 2D patches collected from 

each patient. The prediction probabilities over the whole 

patches for one patient were averaged to calculate the 

probability of patient. Moreover, we augmented the samples 

by random image translation, rotation and flip operations 

when training the model, which could help the MS-DenseNet 

capture invariant tumor features. 

During the training process, the weights of the initial 

network were loaded from pretrained DenseNet-121, and they 

were updated by the stochastic gradient descent algorithm 
using a momentum of 0.9 and a batch size of 32. The learning 

rate was set to 0.1 initially, and decreased by a factor 0.1 every 

10 epochs. The 𝜀 for label smoothing is set to 0.1. Our MS-

DenseNet implementation was based on “pytorch” on a 

machine with an NVIDIA GeForce GTX 1080Ti GPU. 

IV. RESULT 

In order to evaluate the performance of the proposed MS-

DenseNet, the area under the curve (AUC), accuracy (ACC), 

positive predictive value (PPV) and negative predictive value 

(NPV) were quantitatively calculated.  

Quantitative analysis 

A single-scale DenseNet with the input of one-channel raw 
image was chosen as a baseline in this work. A set of ablation 
experiments were conducted to validate the effectiveness of 

each component: (a) baseline with input of 32×32 pixels; (b) 

baseline with input of 64×64 pixels; (c) baseline with input of 

128×128 pixels; (d) multi-scale model with the above inputs 

(MS); (e) (d)+multi-channel input (MS+MC); and (f) (e)+label 
smoothing, which is also our proposed method (MS-
DenseNet). The classification results in testing dataset are 
shown in Table I.  

To investigate the effect of multi-scale information on the 

classification accuracy, we compared the MS model with 
single-scale model. As shown in Table 1, the complementary 

information of the three scales facilitated the classification of 

HCC grade (AUCs 0.771 vs. 0.736/0.738/0.713). Moreover, 

the addition of HPV and HS channel proved that the prior 

domain knowledge could further improve the prediction 

performance (AUCs 0.783 vs. 0.771). By combing all the 
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components, the proposed MS-DenseNet performed best in 

the performance with AUC of 0.798, which was statistically 

greater than the baseline (p<0.05). Meanwhile, both the PPV 

and NPV were greater than 0.7, confirming the 

comprehensive ability of the model in stratifying high-grade 
and low-grade HCC. Receiver operating characteristic curves 

(ROCs) were plotted for the visualization of different 

methods (Figure2).  

TABLE I.   

ABLATION STUDY ON DIFFERENT COMPONENTS 

 AUC ACC PPV NPV 

Baseline 32×32 0.736 0.692 0.746 0.594 

Baseline 64×64 0.738 0.681 0.780 0.561 

Baseline 128×128 0.713 0.703 0.630 0.626 

MS 0.771 0.714 0.792 0.605 

MS+MC 0.783 0.725 0.786 0.629 

MS-DenseNet 0.798 0.747 0.758 0.720 

 

V. DISCUSSIONS AND CONCLUSION 

In this paper, we proposed a multi-scale 2D dense 

connected convolutional neural network, incorporating three 

multi-channel branches to capture the CT imaging 

information from different scale.  In addition, we added label 

smoothing to alleviate the overfitting and improve the 

classification performance. Finally, the MS-DenseNet 

achieved encouraging prediction performance for HCC 

histological grade over the CT datasets from two centers. In 

future work, we plan to train the model with multi-phase CT 

imaging or MR imaging and explore whether they can 

facilitate the grade classification. Moreover, automatic 

segmentation algorithm can be used to increase the robustness 

of our model. 

REFERENCES 

[1] Forner A, Reig M, Bruix J, “Hepatocellular carcinoma,” Lancet, vol. 

391, pp. 1301-14, 2010 

[2] de Lope CR, Tremosini S, Forner A, Reig M, Bruix J, “Management of 

HCC,” Journal of hepatology, vol. 56 pp. S75-S87, 2012 

[3]  Nzeako UC, Goodman ZD, Ishak KG. “Comparison of tumor 

pathology with duration of survival of North American patients with 

hepatocellular carcinoma,” Cancer, vol. 76, pp. 579–588, 1995 

[4] Okusaka T, Okada S, Ueno H et al, “Satellite lesions in patients with 

small hepatocellular carcinoma with reference to clinicopathologic 

features,” Cancer, vol. 95, pp. 1931–1937, 2002 

[5]  Bruix J, Sherman M, “Management of hepatocellular carcinoma,” 

Hepatology, vol. 42, pp. 1208–1236, 2005 

[6] Robert M, Sofair AN, Thomas A, et.al. “A comparison of 

hepatopathologists’ and community pathologists’ review of liver 

biopsy specimens from patients with hepatitis C,” Clinical 

Gastroenterology and Hepatology, vol. 7, pp. 335-338, 2009 

[7] Cameron A, Khalvati F, Haider MA, Wong A, “MAPS: a quantitative 

radiomics approach for prostate cancer detection,” IEEE Transactions 

on Biomedical Engineering, vol.  63, pp. 1145–1156, 2016 

[8] Huang YQ, Liang CH, He L et al, “Development and validation of a 

radiomics nomogram for preoperative prediction of lymph node 

metastasis in colorectal cancer,” Journal of Clinical Oncology, vol. 34, 

pp. 2157–2164, 2016 

[9] Liu Z, Zhang XY, Shi YJ et al, “Radiomics analysis for evaluation of 

pathological complete response to neoadjuvant chemoradiotherapy in 

locally advanced rectal cancer,” Clinical Cancer Research, vol. 23, pp. 

7253–7262, 2017 

[10] Ding JL, Xing ZY, Jiang ZX et al, “CT-based radiomic model predicts 

high grade of clear cell renal cell carcinoma,” European Journal of 

Radiology, vol. 103, pp. 51–56, 2018 

[11] Tian Q, Yan L F, Zhang X, et al, “Radiomics strategy for glioma 

grading using texture features from multiparametric MRI,” Journal of 

Magnetic Resonance Imaging, vol. 48, pp. 1518-1528, 2018 

[12] Gu D, Hu Y, Ding H, et al. “CT radiomics may predict the grade of 

pancreatic neuroendocrine tumors: a multicenter study,” European 

radiology, pp. 1-11. 2019 

[13] Zhou Q, Zhou Z, Chen C, et al. “Grading of hepatocellular carcinoma 

using 3D SE-DenseNet in dynamic enhanced MR images,” Computers 

in biology and medicine, vol. 107, pp. 47-57, 2019 

[14] Zhou W, Wang G, Xie G, et al. “Grading of hepatocellular carcinoma 

based on diffusion weighted images with multiple b ‐values using 

convolutional neural networks,” Medical physics, 2019. 

[15] Dou T, Zhou W. “2D and 3D convolutional neural network fusion for 

predicting the histological grade of hepatocellular carcinoma,” in the 

24th International Conference on Pattern Recognition (ICPR), 2018, pp. 

3832-3837 

[16] Peng L, Lin L, Hu H, et al. “Multi-scale Residual Network with Two 

Channels of Raw CT Image and Its Differential Excitation Component 

for Emphysema Classification,” Deep Learning in Medical Image 

Analysis and Multimodal Learning for Clinical Decision Support. 

Springer, Cham, pp. 38-46, 2018 

[17] Huang G, Liu Z, Van Der Maaten L, et al. “Densely connected 

convolutional networks,” in Proceedings of the IEEE conference on 

computer vision and pattern recognition, 2017, pp.4700-4708 

[18] Xie Y, Xia Y, Zhang J, et al. “Knowledge-based collaborative deep 

learning for benign-malignant lung nodule classification on chest CT,”. 

IEEE transactions on medical imaging, vol. 38, pp. 991-1004, 2018 

[19] Szegedy C, Vanhoucke V, Ioffe S, et al. “Rethinking the inception 

architecture for computer vision,” in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2016, pp.2818-

2826 

[20] Edmondson H A, Steiner P E. “Primary carcinoma of the liver. A study 

of 100 cases among 48,900 necropsies,” Cancer, vol. 7, pp. 462-503, 

1954 

Figure 2. Receiver operating characteristic curves for different methods 

2587


