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Abstract— Cobb angle is the most common quantification of
the spine deformity called scoliosis. Recently, automatic Cobb
angle estimation has become popular with either semantic
segmentation networks or landmark detectors. However, such
methods can not perform robustly when some vertebrae have
ambiguous appearances in X-ray images. To alleviate the above
problem, we propose a multi-task model that simultaneously
outputs semantic masks and keypoints of vertebrae. When
training this model, we propose a heterogeneous consistency
loss function to enhance the consistency between keypoints and
semantic masks. Extensive experiments on anterior-posterior
(AP) X-ray images from AASCE MICCAI 2019 Challenge
demonstrate that our method significantly reduces Cobb angle
estimation errors and achieves state-of-the-art performances.

Clinical relevance— This work shows that a multi-task model
has some potential to measure Cobb angles in more challenging
situations, and we can directly integrate it into an auxiliary
clinical diagnosis system to assist doctors more effectively for
subsequent treatments.

I. INTRODUCTION

Scoliosis is a sideways curvature of the spine that mostly
happens among teens, and it may cause back pain, leg
numbness, tiredness, and even breathing and heart problems.
The standard quantification of scoliosis is Cobb angle, which
is measured between a tangent of the upper endplate from the
upper vertebra and the other one of the lower endplate from
the lower vertebra. Since manual Cobb angle measurement
is time-consuming and largely depends on the doctor’s
experience, automatic methods in X-ray or Moire images
have been focused on in many recent works [1], [2], [3], [4].

Accurate measurement of Cobb angles remains challeng-
ing due to the ambiguity and variability of vertebrae in X-ray
images. Only relying on predictions in a single task, large
offsets of vertebrae from models trained with limited data
are inevitable, and their unexpected occurrences may lead
to erroneous Cobb angles. Therefore, multiple tasks can be
integrated into a Cobb angle estimator, and outputs from their
branches should be correlated and consistent even with very
different representations.

In this paper, we propose a hybrid method that provides
both keypoints and semantic masks of vertebrae in X-ray
images. This method utilizes the interaction between the
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above two branches in multi-task learning and is motivated
by the intuition that predictions for an identical vertebra in
different tasks should have more similar shapes, we propose
a novel heterogeneous consistency loss function to supervise
the model training procedure. The end-to-end trained model
is evaluated on anterior-posterior (AP) X-ray images from
AASCE MICCAI 2019 Challenge [5] and achieves superior
performance compared to other state-of-the-art methods.

II. METHOD

A. Keypoint Estimation

Keypoints of vertebrae are used to compute Cobb angles.
The same as the keypoint estimation strategy from the
prior work [6], there are t vertebrae (17 in this task) and
t×4 keypoints (top-left, top-right, bottom-right, and bottom-
right for each vertebra) in every X-ray image. Similar to
CenterNet [7], vertebrae are firstly separated by t center
points, each of which keypoints is later computed using their
offsets.

Our keypoint estimator consists of both the keypoint
localization branch and the semantic segmentation branch,
as shown in Figure 1.

1) Feature Map: HRNet is integrated to extract convo-
lutional features because it outperforms others such as U-
Net and Hourglass in many computer vision tasks, based
on its parallel multi-resolution fusions [8]. Consequently,
given a nh × nw X-ray image, feature maps from four
streams in multiple resolutions are extracted and channel-
wisely concatenated to the highest resolution bnh

4 c × b
nw

4 c.
2) Keypoint: Branches for predicting center heatmaps,

center offsets, corner offsets, and semantic masks are built,
each of which contains two convolutional layers.

3) Center Heatmap: The Gaussian kernel is applied to
generate heatmaps of the ground truth center points, and
the element-wise maximum is computed if Gaussians of
several central points overlap. Therefore, the center heatmap
has only one channel to distinguish the vertebra from the
background.

4) Center Offset: Center offsets are provided to reduce the
localization errors resulted from feature map downsampling.
Given a center point pk = (xc, yc) in the input image, its
resolution is reduced to (bxc

4 c, b
yc

4 c) in the corresponding
feature maps. Consequently, its center offset becomes (xc

4 −
bxc

4 c,
yc

4 −b
yc

4 c). As a result, the center offset map consists
of t × 2 channels, since there are t vertebrae, and two-
dimensional coordinates of one center locate a vertebra in
a single-channel map.
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Fig. 1. The proposed keypoint estimation framework: given an input X-ray image, convolutional feature maps are extracted with HRNet-18 and are
subsequently used to output the center heatmap, the center offset map, the corner offset map, and the semantic mask. t peaks determine center points in
the center heatmap and corresponding values in the center offset map. Corner offset coordinates and center locations are finally combined to compute the
output corner coordinates.

5) Corner Offset: Corner offsets are built to recover
absolute locations of corner points in an image. Therefore,
the corner offset map contains 4× 2 channels, because two-
dimensional coordinates of four corners form a vertebra in
an image.

6) From Map to Keypoint: Top t peaks which val-
ues are no less than their eight-connected neighbors in
the center heatmap are selected: {p1, p2, ..., pt}, pi =
(xi, yi), and according to offsets in the center offset maps:
{∆p1,∆p2, ...,∆pt},∆pi = (∆xi,∆yi), locations of center
points become {p1 + ∆p1, p2 + ∆p2, ..., pt + ∆pt}.

7) Semantic Segmentation: The semantic segmentation
task is added to make feature maps focus on the spine more
directly, compared to keypoint regression.

B. Heterogeneous Consistency Loss

Convolutional features of vertebrae are captured and im-
plicitly expressed by the output branches, and even they
should be consistent even in different representations. There-
fore, we propose a heterogeneous consistency loss to harmo-
nize the differences brought by various representations.

A sequence {v1, v2, ..., vt} contains t vertebrae, where
vi = {pr,1, pr,2, pr,3, pr,4} denotes i-th vertebra with four
corner points. The output mask for training a keypoint esti-
mator consists of a synthetic mask generated from keypoints
and a semantic mask directly from the segmentation branch:

Mkpt = FWT (v1, v2, ..., vt)

Mprd = αcscMkpt + (1− αcsc)Mmsk

(1)

where Mkpt, Mmsk, and Mprd are the synthetic mask, the
semantic mask, and the predicted mask, respectively. FWT
represents a simple image processing function to fill all
the pixels inside every vertebra with white color given a

completely black template, and αcsc is a weight to balance
the above two masks.

Therefore, we define the heterogeneous consistency loss
Lsp,csc with a focal loss for pixel-wise spine classification.

C. Multi-task Loss

To train the keypoint estimator end-to-end in this task, we
define an overall loss function for optimizing the weights of
all the branches:

Ltotal = Lctr,hm + Lctr,off + Lcnr,off + αsegLsp,csc

= Lctr,fcl + Lctr,1 + Lcnr,1 + αsegLsp,fcl

(2)

where Lctr,hm, Lctr,off , Lcnr,off , and Lsp,csc denote losses
for center heatmap, center offset, corner offset, and spine
segmentation. Specifically, Focal loss L·,fcl [9] and L1 loss
L·,1 are applied for these tasks. αseg balances the spine
segmentation loss and other keypoint localization losses.

III. EXPERIMENTS

A. Dataset

Dataset 16 in AASCE MICCAI 2019 Challenge is used
for evaluation. Concretely, every spine contains 17 vertebrae,
and a vertebra has four keypoints. All the keypoints are
manually labeled and divided by doctors to prevent patients
from appearing in both training and test subsets. Conse-
quently, there are 481 AP X-ray images for training and 128
counterparts for the test. Finally, the sub-challenge organizers
provide Cobb angles using fixed rules.

B. Implementation Details

A vertebra-focused landmark detection network [6] is
selected as our baseline, and ResNet-34 [12] with pre-trained
weights is its backbone while HRNet-18 is ours. Due to the
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Fig. 2. Results of keypoint estimators using different parameters: models perform better if the synthetic mask from keypints and the semantic mask
is properly fused. Consequently, SMAPE from the model trained with a heterogeneous consistency loss can reach 7.91, which is lower than that with a
typical semantic segmentation loss.

TABLE I
COBB ANGLE ESTIMATION RESULTS ON TEST SET.

Method Input Resolution SMAPE↓ SMAPEPT ↓ SMAPEMT ↓ SMAPETL ↓ MSE ↓ FPS↑

Multi-view Extrapolation Net [10] 512×256 23.43 16.38 30.27 35.61 77.94 11.40
Residual U-Net [11] 1024×512 16.48 9.71 25.97 33.01 74.07 2.38
Landmark Detection Network [6] 1024×512 10.81 6.26 18.04 23.42 50.11 5.65

Landmark Detection Network [6] 1024×512 9.71 6.22 15.39 22.39 61.90 14.28
Keypoint Estimator 1024×512 9.97 6.65 14.94 21.27 56.04 12.46
Ours 1024×512 8.62 4.76 15.83 21.04 52.72 12.33

small size of the dataset, we apply 15-fold cross-validation
to the training set. Epochs and batch size for model training
are respectively 50 and 2. The optimizer is Adam [13] with
the initial learning rate 1.25 × 10−4. When the model has
a smaller loss on the current split validation subset than all
the past ones, its weights are saved or covered. In addition,
nh and nw are respectively set as 1024 and 512.

IV. EVALUATION METRICS

To evaluate the performance of a Cobb angle estimator, we
use Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE =
1

nI

nI∑
i=1

∑3
c=1 |âi,c − ai,c|∑3
c=1 (âi,c + ai,c)

(3)

where â and a denote respectively the predicted Cobb angle
and the ground truth one. The test set has nI images, then
three Cobb angles in Proximal Thoracic (PT), Main Thoracic
(MT), and ThoracoLumbar (TL) are evaluated in every
image, and we abbreviate them as SMAPEPT , SMAPEMT ,
and SMAPETL.

To measure the distance between predicted keypoints and
ground truth ones, we apply Mean Squared Error (MSE):

MSE =
1

np

np∑
i=1

(p̂i − pi)2 (4)

where the test set has np keypoints, and pi is the i-th
keypoint.

V. ABLATION STUDIES

We take ablation studies for our Cobb angle estimator,
as shown in Table I and Figure 2. In Table I, the results
of ”Multi-view Extrapolation Net”, ”Residual U-Net”, and
”Landmark Detection Network” at the top three rows come
from previous works. To make fair comparisons, using the
same implementation details, ”Landmark Detection Net-
work” is chosen and re-experimented, and its variant with a
different backbone HRNet-18 is called ”Keypoint Estimator”.

A. Effectiveness of HRNet

Keypoint locations are significantly improved using
HRNet-18, compared to ResNet-34. Specifically, MSE of
”Keypoint Estimator” drops from 61.90 to 56.04, compared
to this metric of ”Landmark Detection Network”, although
SMAPE and FPS slightly decrease by 0.26 and 1.82.
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Fig. 3. Keypoint predictions on test images: red, blue, and green circles are keypoints from the baseline, our method, and ground truth annotations.
Accordingly, red and blue lines represent distances from baseline predictions or ours to ground truth labels. From Subfigure (a) to Subfigure (d), we can
properly estimate Cobb angles using both methods; even large offsets of keypoints exist in Subfigure (e), our method can still maintain a relatively correct
spine structure.

B. Effectiveness of Semantic Segmentation
The semantic segmentation slightly affects the perfor-

mances of keypoint regression, but it significantly helps Cobb
angle estimation. MSE of ”Keypoint Estimator” increases
from 61.90 to 61.98, but SMAPE reduces from 9.97 to 8.25.

C. Effectiveness of Heterogeneous Consistency Loss
Estimators trained with the heterogeneous consistency loss

outperform models without it if such consistency loss and
common semantic segmentation loss are properly fused. It
achieves the lowest SMAPE 7.91 not surprisingly because
this consistency loss is extended exactly from the semantic
segmentation one. However, its MSE increases to 64.19,
which indicates that Cobb angle estimation does not always
perform monotonously with corner point regression. There-
fore, we select the model with SMAPE 8.62 and MSE 52.72
for the multi-task balance.

VI. CONCLUSION
In summary, we present a new loss function that enhances

the consistency between keypoints and semantic masks for
Cobb angle estimation. Our keypoint estimator is built on
successful feature extraction layers and landmark detection
networks. The heterogeneous consistency loss is simple and
effective without slowing down the inference speed, and it
pays more attention to the global spine structure described
from keypoints. Extensive experimental results on X-ray
images from AASCE MICCAI 2019 Challenge demonstrate
its potentials to train more accurate Cobb angle estimators.
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