
  

  

Abstract—This preliminary study reports application of a 

neural network classifier to the processing of previously 

collected data on low power radiofrequency propagation 

through the wrist with the goal to detect osteoporotic/osteopenic 

conditions. The data set used includes 67 subjects (23-94 years 

old, 50 females, 17 males, 27 osteoporotic/osteopenic, 40 healthy). 

We process the entire spectrum of the propagation coefficient 

through the wrist from 30 kHz to 2 GHz, with 201 sampling 

points in total. We found that the dichotomic diagnostic test of 

raw non-normalized radiofrequency data performed with the 

trained neural network approaches 90% specificity and ~70% 

sensitivity. These results are obtained without inclusion of any 

additional clinical risk factors. They justify that the radio 

transmission data are usable on their own as a predictor of bone 

density. With the inclusion of additional clinical risk factors, 

both specificity and sensitivity improve to 95% and 76% 

respectively. Our approach correlates well with the available 

DXA measurements and has the potential for screening patients 

at risk for fragility fractures, given the ease of implementation 

and low costs associated with both the technique and the 

equipment. 

 
Clinical Relevance— Dichotomic diagnostic test of raw non-

normalized radiofrequency data performed with the trained 

neural network approaches 90% specificity and ~70% 

sensitivity. With the inclusion of other clinical risk factors, 

specificity and sensitivity increase to 95% and 76% respectively. 

I. INTRODUCTION 

Approximately 50% of women and 20% of men over the 

age of 50 will suffer from a fragility fracture in their 

remaining lifetime [1]. Hip fracture is one of the most serious 

and debilitating outcomes of osteoporosis [2], with a 14–36% 

mortality rate during the first-year post fracture [3]. Hip 

fracture incidence rates are known to increase exponentially 

with age in both women and men [4]. The number of fractures 

is predicted to double or triple by 2040 [5]. 

The World Health Organization (WHO) has defined 

individuals at risk for these fractures based on their areal bone 

mineral density (aBMD, g/cm2) relative to that of a normal 

young adult, as measured by Dual-energy X-ray 

Absorptiometry (DXA). The disadvantages of DXA include: 

exposing patients to ionizing radiation doses of up to 0.86 
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mrem [6]; the surrounding soft tissues can introduce relevant 

measurement errors [7]; bone mineral density (BMD) 

measurements are affected by variations in bone size [8]; and 

cortical and trabecular bone cannot be separated [9]. 

Additionally, fracture predictions based on aBMD have been 

shown to be neither sensitive nor specific [10],[11].  

Microwave or radiofrequency imaging of (heel) bone was 

first introduced by Dr. Keith Paulsen and his research group 

at Dartmouth College approximately ten years ago as an 

alternative non-ionizing diagnostic method to assess bone 

health [2]. Due to the well-known complexity and poor spatial 

resolution of the standard microwave imaging setup [12] used 

in these studies, no clinically applicable results have been 

generated to date. However, the underlying physical idea of 

this method is simple and powerful. In osteoporosis, bone 

mass decreases and pore size increases. The lost bone mass is 

replaced by a mixture of yellow bone marrow. Such 

substantial changes in physical properties alter 

electromagnetic tissue properties [13] and generate a 

significantly different radiofrequency (RF) channel through 

the bone. 

To measure this, we have selected the wrist, a body 

compartment where bone constitutes a significant fraction of 

the total tissue volume and is easily accessible. We have 

measured radio wave propagation through this compartment 

and compared our results with osteoporotic and osteopenic 

(low bone density) conditions established via DXA and 

through a history of bone fracture [14].  

In the present study, we have included additionally 

collected subject data (7 new subjects) and have employed a 

neural network approach to process the previously obtained 

and new data for improved results, especially those obtained 

without the inclusion of clinical risk factors. We hypothesize 

that the incorporation of a neural network analysis will 

significantly improve the predictive power of the presented 

system compared to the current method based on a simple 

threshold binary classifier approach. 
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II. MATERIALS AND METHODS 

A. Device Concept 

The device concept is illustrated in Fig. 1a. Two antennas 
(Fig. 1b) [14] are placed on the superior and inferior flat sides 
of the wrist adjacent to the position of the ulnar head, under an 
applied controlled pressure of 1 kg force. The radiofrequency 
signal in the 0 – 2GHz band travels from the transmit antenna 
through bone, cartilage, and soft tissue to the receiving antenna 
while being attenuated and scattered. The total amount of 
attenuation and scatter is measured via the microwave 
transmission coefficient 𝑆21(𝑓) and is correlated to osteopenic 
and osteoporotic conditions. The antenna width across the 
wrist is 2 cm, and the antenna length along the wrist is 5 cm; 
facilitating good contact between the two surfaces. Details of 
the design of the device including numerical simulations have 
been previously published in [14]. 

 

Fig. 1. a) – Idealized diagram illustrating antenna placement on both sides of 
a human wrist. b) – Transmit and receive dual antiphase patch antennas with 
individual lumped-component matching networks. c) – Wrist tester device 
demonstration. 

B. Data Set 

After receiving Institutional Review Board (IRB) approval 
through Worcester Polytechnic Institute, written informed 
consent was obtained from 80 subjects to participate in this 
study (age range 23-94 years old, 60 female, 20 male, 3 
African American, 4 Hispanic, 64 Caucasian, 9 declined to 
state). All measurements were further performed in 
accordance with the relevant IRB guidelines and regulations. 
72 subjects were measured in a previous study [14], and 8 new 
subjects were added for this study. From 80 subjects, we 
selected 67 subjects suitable for a dichotomous diagnostic set: 

1. Group 1 osteopenic/osteoporotic (DXA T-score 
between – 1.0 and –2.4 for osteopenic subjects and below 
–2.4 for osteoporotic subjects (within the last year) and 
prescribed medications, 55-90 years old, mean 77.5/STD 
10.1). 27 subjects in total (24 female, 3 male). 

2. Group 2 healthy (low risk category, 23-94 years old, 
mean 60.2/STD 16.6). Unknown bone density (no DXA 
data) but either young adults or having no history of bone 
fractures, no medication, and no family history of 
osteoporosis. 40 subjects in total (26 female, 14 male). 
We are comfortable considering these subjects at low risk 
without explicit BMD information because the clinical 
risk factors above can have a larger impact on fracture risk 
than one standard deviation decline in bone density [15]. 

C. Raw Radiofrequency Data 

Fig. 2A shows the magnitude of the transmission 
coefficient, |𝑆21(𝑓)| for 201 frequency sampling points 
between 300 kHz and 2.0 GHz. Group 1 is plotted in red and 
Group 2 is plotted in blue. There is significant overlap between 
the two groups data, especially between 1.8 and 2.0 GHz. 

 

Fig. 2. a) – Transmission coefficient |𝑆21(𝑓)| between the two antennas 

and through left and right wrists the frequency range 0-2 GHz for all subjects 
from Group 1 (osteopenic/osteoporotic) and Group 2 (healthy). Red color 

corresponds to Group 1 while blue color corresponds to Group 2. 160 

frequency curves (both arms for all 80 subjects) in total are shown in the 
figure. b) – The same as in a) but with the data for seven young adults 

highlighted in magenta. c) – The same as in a) but with the data for five 

osteoporotic subjects (T score below – 2.5) highlighted in magenta. 

Additionally, this study also used the normalized 
transmission coefficient data shown in Fig. 7 of [14]. The 
normalized data are similar in shape but have less overlap 
between Groups 1 and 2 due to multiplication by the predictors 
(clinical risk factors) of osteoporosis as shown in Eq. (1). The 
normalized data also provide great differentiation between the 
younger and older healthy subjects [14], where no such 
differentiation is present in the raw data in Fig. 2B. Use of the 
raw data, therefore, is a more challenging problem due to the 
overlap between extremes of Groups 1 and 2 (Fig. 2B, Fig. 
2C). 

𝑁21 =
𝐴𝑔𝑒

𝐵𝑀𝐼
|𝑆21|                                (1) 
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D. Topology of Neural Network 

The neural network used to generate the binary classifier 

was a multilayered network based on MLP (Multi-Layer 

Perceptron) classifier implemented using the MATLAB Deep 

Learning Toolbox™ (MathWorks, Inc, Natick, MA, USA). A 

flow diagram for the entire neural network is shown in Fig. 3 

and is explained below. 

The input in Fig. 3 (featureinput) 

was provided as a matrix with each 

row consisting of the features for a 

given subject. The input data was then 

sent to the first dropout layer 

(dropout_2), which set its features to 

0 randomly with a probability of 50%. 

The dropout layers prevent all weights 

of the following layer from being 

updated simultaneously, which helps 

prevent overfitting. The first fully 

connected layer (fc_2) reduced the 

number of features by an order of 

magnitude. For input data with length 

201, it would output 20 features and 

for input data with length 402 it would 

output 40 features, as specified by dividing the number of input 

features by 10 and rounding the result to the nearest integer. 

Next, a relu activation function was applied to these reduced 

features. The following layer (dropout_1) had a 50% 

probability, identical to the first dropout layer. The result of 

the dropout was fed to the second fully connected layer (fc_1), 

which combined the result of the dropout into a binary 

classifier. The softmax function was applied to this result, and 

then it was classified using cross-entropy loss. 

E. Input Data 

The data used to train the network was derived from the 

transmission coefficient measured through the subject’s wrist.  

It came in four configurations per frequency point:  

1. The complex number representation of the transmission 

coefficient with the real part and imaginary part of each 

frequency point as separate features. 

2. The magnitude of the transmission coefficient 

3. The phase of the transmission coefficient 

4. The magnitude and phase of the transmission coefficient.  

All input data series were generated by averaging together 

the left and right arm spectra for each subject, to match [14]. 

First, we used a conventional training scheme which split 

the data between a single training and single validation set 

with training sets chosen between 20 and 50 subjects (30% to 

75% of data) in size. Due to the small size of our dataset, we 

did not use a test set. This scheme was tested with all four 

input data configurations. Training was stopped manually 

when the best observed accuracy was achieved. 

Because the first scheme needed more data to produce a 

consistent result, we additionally attempted a leave-one-out 

cross-validation scheme [16]. Under a leave-one-out scheme, 

the data are randomly distributed into subsets with 

approximately proportional numbers of Group 1 and Group 2 

subjects in each set. Each data subset takes a turn being the 

validation data, while the remaining sets are the training data. 

This provides a number of individual results equal to the 

number of subsets. Statistics then indicate the overall 

performance of the classifier. 

Because subset size could influence the results, cross 

validation was performed both with 7 subsets of nominally 10 

subjects and 10 subsets of nominally seven subjects. In both 

cases, 3 subsets were undersized by one subject. Leave-one-

out cross-validation was performed on data configurations 1 

and 2 only. 

In all cases, two sets of networks were trained: one using 

the raw transmission coefficient data and the other using the 

normalized transmission coefficient data featured in [14].  

Networks trained using “non-normalized” data used the raw 

magnitude and/or phase information directly, whereas 

networks trained using “Normalized” data first applied Eq. (1) 

to the magnitude and/or phase spectra before putting the data 

through the neural network. 

III. RESULTS 

A. Leave-One-Out Cross-Validation 

The neural network setup described in the previous section 
was applied to the transmission coefficient dataset for 67 
subjects suitable for the dichotomous diagnostic set as 
described in Section II.B above. 

Table 1 shows the aggregate of the results from the first 
leave-one-out testing using all 7 subsets for different input 
data. The same network was also trained with phase data and 
with magnitude and phase data simultaneously, but the 
resulting network was severely over-fitted after training for 
1,000 epochs. Similar results have been obtained for the 
second leave-one-out testing, using each of the 10 subsets 
interchangeably as the validation data. 

Table 1. Training results for MLP neural network using leave-one-out with 7 
subsets of 10 subjects each. The numbers are the mean across 7 trials, where 
each trial used a different single subset as the validation data. 

Input Data  Epochs Sensitivity Specificity Accuracy 

Real/ 

Imag. 

Raw 1,000 0.690 0.905 0.824 

Norm. 1,000 0.761 0.952 0.882 

Mag. 
Raw 1,000 0.630 0.905 0.803 

Norm. 1,000 0.797 0.905 0.867 

B. Fixed Training Sets 

The network trained from normalized magnitude data from 
the 30-subject training set produced a mean sensitivity of 0.85 
and mean specificity of 0.91 as seen in Table 2. Normalized 
data performed better in accuracy than non-normalized data by 
about 0.05. Table 3 shows increasing sensitivity correlates 
with training set size. 

Table 2. Training results using a fixed 30-subject training set and 37-subject 
validation set with early-stop training. Mean across 5 trials with the same 
training and validation data. 

Input Data Epochs Sensitivity Specificity Accuracy 

Real/ 
Imag. 

Raw 175 0.571 0.852 0.746 

Norm. 800 0.686 0.948 0.849 

Mag. 
Raw 175 0.571 1.000 0.838 

Norm. 175 0.857 0.913 0.892 

 

 
Fig. 3. MLP classification 

neural network flow 
diagram featuring two 

fully connected layers. 
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Standard deviations for all entries in Table 2 were 0.0 except 

for the complex normalized data specificity (0.0238) and 

accuracy (0.0148). 
 

Table 3. Training results for raw data using early-stop training on magnitude 
data. Mean across 5 trials with the same training and validation data. 

Training Epochs Sensitivity Specificity Accuracy 

20 350 0.533 0.986 0.813 

30 175 0.571 1.000 0.838 

40 225 0.600 1.000 0.852 

50 125 0.667 1.000 0.882 

IV. DISCUSSION 

In this study, we have found that the neural network trained 
with the entire frequency spectrum of radio wave propagation 
through the wrist may serve as a promising predictor tool for 
detecting osteopenic/osteoporotic conditions. Raw non-
normalized data for the transmission coefficient through both 
wrists have been used as an input, in contrast to our previous 
study [14], where the processed data included clinical risk 
factors as well. In [14], a simple threshold binary classifier was 
used, which is functionally equivalent to checking the area 
under the entire frequency curve for every subject. 

A. Results for non-normalized (raw) data 

In the leave-one-out testing, the trained neural network 
provides sensitivity and specificity values of ~70% and 90%, 
respectively. The specificity compares favorably to the 
sensitivity and specificity provided by data that included 
clinical risk factors (both 87%), presented in a prior study [14]. 
The increase in the specificity obtained in the present study is 
a significant advantage due to the increased correctness when 
predicting the healthy condition, thereby improving utility for 
prescreening. The inclusion of the phase data by the neural 
network serves to increase its sensitivity compared to a 
network trained using only magnitude data (Table 1). 

B. Results for normalized data 

Note that, when instead of the raw dataset, the neural 
network is applied to the normalized dataset including other 
clinical risk factors as in [14], a meaningful improvement is 
obtained. Normalizing the data provides a 5.5% increase in 
overall accuracy. This boost appears to be derived mostly from 
increased sensitivity. It appears, therefore, that inclusion of 
additional clinical risk factors will be complementary to the 
ability of the transmission data to reliably differentiate 
between healthy and diseases patients. 

C. Results for smaller training sets  

Due to the trend of increasing accuracy with increased 
training set size (Table 3), it can be assumed that additional 
data will lead to better classification results. 

D. Future improvements 

It is likely possible to further increase the overall accuracy 
by employing larger training and validation sets. Also note that 
subjects’ data additionally includes the neglected 
circumference of their wrists, which could help further 
improve the sensitivity of the classification. Expected 
transmission varies with fat and muscle content in the wrist, 
and wrist circumference is an indicator of this. Considering the 
wrists separately could also lead to an improvement due to 
necessarily doubling the amount of data. 

V. CONCLUSION 

These results are obtained without inclusion of any 
additional clinical risk factors. We therefore conclude that the 
radio transmission data are usable on their own as a predictor 
of bone density, without the need to include any clinical risk 
factors into the calculations as done so previously [14].  

Our approach correlates well with the available DXA 
measurements and has the potential for screening patients at 
risk for fragility fractures, given the ease of implementation 
and the low costs associated with both the technique and the 
equipment. Neural networks can identify and use 
characteristics of the data not readily apparent to the human 
eye to increase specificity of predictions. To get widespread 
acceptance and validation, this approach must be evaluated in 
a clinical trial, where patient data can be trained and tested 
against actual fracture cases. 
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