
  

 

Abstract— An algorithm has been constructed for estimating 

minimum toe clearance (MTC), an important gait parameter 

previously proven to be a critical indicator of tripping risk. It 

uses data from a previously reported in-shoe motion sensor 

(IMS) for detecting gait events. First, candidate feature points in 

the IMS signal for use in detecting MTC events were identified. 

Then, the temporal agreement between each feature point and 

target MTC event was evaluated. Next, the accuracy and 

precision of the MTC estimated using each feature point was 

evaluated using a reference value obtained using a 3-D optical 

motion-capture system. The MTC was estimated using a 

geometric model and the IMS signal corresponding to the 

predicted MTC event. Once the best candidate feature point was 

identified, a real-time MTC estimation algorithm for use with an 

IMS was constructed. The mean values and standard deviations 

of measured foot motions obtained in a previous study were used 

for evaluating accuracy and precision. The results suggest that 

MTC events can be estimated by detecting the crossing point 

between the acceleration waveforms in the anterior-posterior 

and superior-inferior directions in an accuracy of 2.0% gait 

cycle. Using this feature point enables the MTC to be estimated 

in real time with an accuracy of 8.6 mm, which will enable 

monitoring of MTC in daily living. 

I. INTRODUCTION 

Tripping is a major cause of falls in the elderly [1], and 
minimum toe clearance (MTC) has been proven to be a critical 
indicator of tripping risk [2–3]. The MTC event is important 
during the swing phase because it is the point at which a trip is 
most likely to occur [4]. At the moment of the MTC event, the 
toe-ground clearance is at a minimum, typically 10–30 mm. 
Accurate MTC measurements have only been possible using 
optical 3D motion capture inside the laboratory [5]; however, 
to reduce the risk of falling during everyday walking, there is 
an urgent need for monitoring the MTC in daily life. 

A recent approach to addressing this need is the mounting 
of motion sensors in footwear. Such an “in-shoe motion sensor 
(IMS) system” uses a single inertial measurement unit (IMU) 
to acquire acceleration and angular velocity at the foot. Its 
usability has made it feasible to provide stable and precise gait 
measurement in daily life [6–7]. There are several methods for 
estimating MTC by using an IMU mounted on the foot. For 
example, Santhiranayagam et al. proposed a machine learning 
method using hill-climbing feature selection based on the 
signal from a toe-mounted IMU [8]. However, such a machine 
learning approach requires complicated preprocessing and 
lengthy calculation. Mariani et al. suggested an MTC 

 
All the authors are with the Biometrics Research Labs., NEC Corporation, 

Abiko, Chiba 270-1174 Japan. 
Corresponding author: Chenhui Huang (phone: +81-80-8818-5507; e-

mail: chenhui.huang@nec.com) 

estimation method in which the complete toe trajectory is 
geometrically predicted on the basis of data from an instep-
mounted IMU [9]. However, this method is not practical for 
real-time estimation of the MTC because the measured data 
need to be transferred to a PC for processing before being used 
for MTC calculation. 

We speculated that if the MTC event in a stride could be 
detected, it would not be necessary to predict the entire toe 
trajectory and then search for the MTC. It should be possible 
to estimate the MTC from the geometric relationship between 
the foot and the ground at the moment of the MTC event. This 
would make MTC estimation practical in real time. 

We previously demonstrated that it is possible to detect the 
heal-strike (HS) and toe-off (TO) gait events from an IMS 
signal by using a simple peak detection method [10].  By the 
hint from the results obtained in that study, we investigated 
whether there is an easily detectable feature point, such as a 
peak, valley, or crossing point, that can be used for detecting 
MTC events precisely. We first searched for a feature point 
useful for MTC event detection and then evaluated the 
temporal agreement between the feature point and MTC 
events. Next, we evaluated the accuracy and precision of the 
estimated MTCs using candidate feature points on the basis of 
a reference value measured with a 3-D optical motion-capture 
system. The MTCs were calculated using a geometric model 
and the IMS signal at the predicted MTC event. Finally, we 
constructed an MTC estimation algorithm based on the best 
candidate feature point. In this study, we used the same 
datasets collected in our previous study. 

II. MATERIAL AND METHODS 

A. Participants 

We recruited 26 participants (20 male and 6 female) for 
whom we collected data on their gender, age, height, weight, 
and shoe size. The average age was 39.3 ± 9.5 years, the 
average height was 169.5 ± 7.7 cm, the average weight was 
67.2 ± 12.1 kg, and the average shoe size was 26.4 ± 1.0 cm. 
All participants could walk independently without an 
assistance device such as a cane, crutches, or orthotic device. 
They had normal or corrected-to-normal vision, no history of 
neuromuscular or orthopaedic disease, and no obstacles to 
communication. The experimental procedure was explained to 
all participants, and informed consent was obtained 
individually before the experiment. The experimental 
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procedures involving human participants described in this 
paper were approved by the NEC Ethics Committee. 

B. Experiment setup and protocol 

We used the MATLAB software (Mathworks, USA) for 
the data processing and simulation. Fig. 1 shows the 
experimental scheme and shoe setup. An IMS was mounted in 
the insole of the shoe on the right foot, beneath the foot arch to 
ensure that the participants could walk naturally. Sports shoes 
of the appropriate size were attached tightly on the 
participants’ feet. The data measured by the IMS were 
transferred to a smartphone interface and stored. The 
acceleration and angular velocity for three axes were directly 
measured: acceleration Ax (medial: +, lateral: −), Ay (posterior: 
+, anterior: −), and Az (superior: +, inferior: −); angular 
velocity Gx (plantarflexion: +, dorsalflexion: −), Gy (eversion: 
+, inversion: −), and Gz (abduction: +, adduction: −). The sole-
to-ground angle (SGA) roll (Ex), pitch (Ey), and yaw (Ez) of the 
foot for the three axes were calculated internally using a 
Madgwick filter [11]. The definitions of the directions are the 
same as those for angular velocity. The acceleration values 
were then corrected to the global coordinates. 

Motion data obtained using a 3-D motion analysis system 
with ten cameras (System: Track 3, Cameras: Bonita B10, 
Vicon Motion Systems, UK) was used for reference. The 
cameras were set on both sides of an 8-m straight walking path 
at a height of 2.5 m from the ground, five cameras on each 
side.  

Optical reflection markers were attached to the surface of 
each shoe. An example right shoe is shown in Fig. 1; one 
marker was located at the toe, and the others were at the 
midfoot and hindfoot; the markers on the other shoe were 
symmetrically attached. The markers at the midfoot and 
hindfoot were combined as a rigid body, with the gravity 
centre set on the marker at the heel. The foot motion could thus 
be represented by the motion of a rigid body. The trajectory of 
the rigid body was equivalent to that of the heel, which could 
be used to clarify the moment of an HS. The traced trajectories 
of the toe marker were used to clarify the movement of the toe 
and the moment of a TO (TTO) event at the minimum of the 
trajectory. All participants walked along the path at a self-
determined comfortable speed in four successive trials. Their 
gait data were captured by both the IMS and motion analysis 
system. The data sampling frequency was set to 100 Hz. The 
acceleration measurement range was ±16 g, and the angular 
velocity range was ±2000 degree/s in the IMS. 

 
Fig. 1.  Experimental scheme and shoe setup. 

C. Finding IMS signal features for MTC event detection 

By the hints of our previous study [10], we investigated 
whether there is an easily detectable feature point in real-time 

algorithm, such as a peak, valley, or crossing point, that can be 
used for detecting MTC events precisely. To determine 
whether there is a signal feature that can be used for reliably 
detecting MTC events, we first synchronized the IMS signals 
with the Vicon optical motion-capture system signal for each 
walking trial offline by using Ex obtained from both systems. 
Fig. 2 shows the synchronized toe and heel trajectory in the Z 
direction and acceleration Ay and Az (2(a)) and angular velocity 
Gx (2 (b)) waveforms during approximately one gait cycle 
(GC). The MTC event in the reference data is at the local 
minimum after TO on the toe trajectory (TMTC). Feature points 
Fy, Fyz, Fz, and Fgx can be considered candidates, where Fy is 
the zero-crossing point from TO to HS in Ay, i.e. the peak 
velocity in the anterior direction; Fz is the first zero-crossing 
point after TO in Az; Fyz is an Ay and Az crossing point prior to 
Fz; and Fgx is the minimum of Gx. The one that has the highest 
synchronicity with TMTC, which is judge by the highest 
temporal accuracy, AT and lowest precision, PT values 
calculated by (1) and (2), is the most optimal point for MTC 
event detection, Fq 

AT = ΣW
w=0(Fa_w−TMTC_w)/W                 (1) 

PT = {ΣW
w=0[(Fa_w−TMTC_w)−AT]2/W}1/2            (2) 

where W means the total number of the dataset, the index “_w” 
means the wth data in the dataset and the index “Fa” was used 
to represent arbitrary listed aforementioned feature points 
indexes. 

 

Fig. 2 Synchronized toe and heel trajectory in Z direction (a) with 

Ay, Az; (b) with Gx. 

D. Geometric MTC prediction model 

The method for calculating MTC from the measured 
trajectory of an IMS mounted beneath the foot arch is shown 
schematically in Fig. 3. The trajectory of the marker on the toe 
is treated as reference data. The distance from the marker on 
the toe to the ground is set to zero at TTO. Therefore, the true 
MTC (HMTC) can be expressed as 

HMTC  = H'MTC −Htoe,                             (3) 

where Htoe and H'MTC are the marker’s measured heights at TTO 
and TMTC, respectively. Due to the thickness of the sole and the 
structure of the shoe, the IMS was located at a height of d (12 
mm in this study) from the ground, and the marker on the toe 
was located at a height of M from the ground. Both are shoe-
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related parameters, so the estimated MTC (H1
MTC) is located 

on a different plane than HMTC; thus, when evaluating 
prediction accuracy, HMTC must be converted into H0

MTC by 
using offset N relevant to M and d. Precision can then be 
evaluated by comparing H1

MTC with H0
MTC.  

H0
MTC = HMTC − N  = HMTC − (M − d) × cosEx(TMTC),         

(4) 

where Ex(TMTC) is Ex at TMTC. To obtain the height at TMTC in 
the vertical trajectory of IMS (T), the data streams are split 
between strides by detecting the foot-flat points. The trajectory 
is then calculated by applying the zero velocity update (ZUPT) 
algorithm [12]. The synchronized Vicon motion-capture 
system data streams are also split at the foot-flat points. After 
that, H1

MTC can be obtained from the geometric relationships 
shown in Fig. 3 by using 

H1
MTC  = ZS’(TMTC) + d - LMTC,                      (5) 

where ZS’(TMTC) is the IMS measured height at TTO, and ZS' is 
the Z direction trajectory ZS corrected using the ZUPT 
algorithm. LMTC is the perpendicular distance from the IMS to 
the distal end of the toe at TMTC: 

LMTC  = L1 × sinEx(TMTC).                         (6) 

L1 is the distance from the IMU in the IMS to the distal end 
of the toe. Its value is unknown. It could be manually measured 
after mounting the sensor in the shoe, but doing so would be 
practically cumbersome and could lead to imprecision. Instead, 
L1 can be automatically calculated independent of sensor 
mounting by using the data captured at TO: 

L1  = [Zs'(TTO) + d]  / sinEx(TTO),                      (7) 

where Zs'(TTO) and Ex(TTO) are the height and the Ex at TTO, 
respectively. Then, H1

MTC can be expressed by 

H1
MTC  = ZS'(TMTC) + d – [Zs'(TTO) + d] / sinEx(TTO) × 

sinEx(TMTC),                       (8) 

where all the parameters can be determined on the basis of the 
shoes and the measured values at TTO and TMTC. If we ignore 
the effect of the thickness of the sole (i.e. d is assumed to be 
0), H1

MTC can be expressed by 

H1
MTC  = ZS'(TMTC)  – Zs'(TTO)/ sin Ex(TTO) × sinEx(TMTC).                            

(9) 

 

Fig. 3 Geometric MTC prediction model for IMS mounted beneath 

foot arch. 

And therefore, the accuracy and precision of proposed 
algorithm for MTC estimation AMTC and PMTC can be expressed 
as, 

AMTC = ΣW
w=0(H1

MTC_w− H0
MTC_w)/W           (10) 

PMTC = {ΣW
w=0[(H1

MTC_w− H0
MTC_w)−AMTC]2/W}1/2    (11) 

E. Algorithm for real time MTC estimation 

From the results for MTC estimation that will be shown in 
Section III, Fq is Fyz and we determined that the key point of 
the algorithm for real time MTC estimation is to how to detect 
Fyz in real time. By observing Ay and Az, we found that, in one 
gait cycle, there were many crossing points on Ay and Az 
whereas Fyz was the nearest crossing point prior to Fz. 
Therefore, we constructed the algorithm as shown in Fig. 4. 
The real-time data stream (Ay

i, Az
i, and Ex

i) is temporarily 
stored in a buffer of size N, Buf[N], where i is the number in 
the data stream; N was set to 256 to ensure that data points over 
two strides could be stored, with the data for one stride being 
split from the total data stored. The stride split algorithm splits 
the data for one stride (Ay, Az, and Ex) from the foot-flat point 
in the first stride (K1) to the one in the second stride (K2), 
which are labelled in the figure as AyS, AzS, and ExS. AyS is used 
for TO event detection by using the feature point proposed in 
our previous study [10]. ExS is directly input into the MTC 
estimation model. AzS is used to calculate Z'S and to detect, 
along with AyS, the MTC event. The TMTC in each stride is 
detected by sweeping AyS and AzS along the temporal axis, 
detecting the time stamps of their crossing points in order, and 
temporarily recording the latest one as TMTC. The appearance 
of Fz is monitored as well. Once Fz is detected, the sweeping 
is terminated, and the final recorded time stamp of the crossing 
point of AyS and AzS is taken as TMTC. In the flow of MTC event 
detection algorithm, k means the number of data points 
between K1 and K2. 

 

Fig. 4 MTC estimation algorithm based on Fyz detection. 

III. RESULTS 

A.  Candidates for MTC event detection 

The accuracy and precision of synchronicity for the 
candidate points and TMTC are summarized in Table I. The 
positive and negative values mean after and before, 
respectively. The MTC event occurred at 15.2 ± 2.2%GC after 
TTO as measured using the Vicon motion-capture system. 
Candidate Fyz had the best synchronicity as it was only 
1.5%GC before the reference MTC event with a precision of 
2.0%GC. Although candidates Fy and Fz had precision almost 
the same as that of Fyz, they were 8.0%GC and 2.9%GC after 
the reference MTC event.  

TABLE I.  ACCURACY AND PRECISION OF SYNCHRONICITY FOR 

CANDIDATE POINTS AND TMTC 
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Candi-

date 

Moment of MTC event (%GC) 
Synchronicity 

(%GC) 

Vicon system IMS AT  PT  

Fy 

15.2 ± 2.2 

23.2 ± 1.7 8.0 2.3 

Fyz 13.7 ± 1.9 −1.5 2.0 

Fz 18.1 ± 1.6 2.9 2.1 

Fgx 22.6 ± 6.3 7.4 5.2 

 

B. Results of MTC estimation using different candidates 

We took Fy, Fyz, and Fz as the primary candidates for MTC 
estimation. For each one, the corresponding MTC event was 
determined by extracting the corresponding temporal offset 
(“Accuracy” column in Table I). The results are summarized 
in Table II. Feature point (Fyz + 1.5%GC) achieved the most 
robust MTC estimation: a −0.3 mm difference with a precision 
of 8.6 mm between the true and estimated value while the 
precisions of the other two feature points were 9.3 and 8.8 mm. 
A Bland–Altman plot of the Vicon system and IMS measured 
MTC for the best feature point with a 95% confidence interval 
(CI, ±1.96 SD) around perfect agreement is shown in Fig. 5. 
The difference between the two systems slightly increased 
with the average MTC. The dotted line represents the mean 
value, and the two dashed lines represent the upper and lower 
limits of the confidence interval. 

TABLE II.  MTC ESTIMATIONS COMPARED WITH REFERENCE VALUE 

Feature 

point  

MTC (mm) 
AMTC (mm) PMTC (mm) Vicon 

system 
IMS 

Fy – 

8.0%GC 

22.4 ± 

6.6 

22.3 ± 

11.2 
−0.1 9.3 

Fyz + 

1.5%GC 

26.5 ± 

10.1 
−0.3 8.6 

Fz – 

2.9%GC 

26.5 ± 

10.7 
0.4 8.8 

 

 

Fig. 5 Bland–Altman plot comparing agreement of Vicon and IMS 
measured MTC using best feature point (Fyz + 1.5%GC). 

 

IV. DISCUSSION AND CONCLUSION 

Using results obtained in a previous study, we have 
constructed an online algorithm for estimating minimum toe 
clearance (MTC) that uses data on gait event detection 
obtained from an in-shoe motion sensor. The predicted MTC 
had a precision of 8.6 mm, slightly improved than that 
obtained in a previous study [9]. The MTC event was 
synchronized with the moment of the acceleration vector was 
45 degree with both the vectors in the anterior and inferior 

directions. This finding differs from that of De Asha et al., who 
suggested that MTC was synchronized with the peak velocity 
in the anterior direction (Fy) [13]. We found that Fy was 8.0 ± 
2.2 %GC after MTC. We also found that Fyz occurred around 
13.7%GC after TO. According to the gait phase defined by 
Neumann [14], this feature point can also be used for 
identifying the feet adjacent event, i.e. the start of the mid-
swing phase. 

Begg et al. [3] demonstrated that a histogram of the 
skewness of MTC in multiple strides can be used for predicting 
falls if the estimation precision is at least 5 mm.  Our future 
work includes improving the algorithm to achieve higher 
precision. It also includes testing the applicability of the 
algorithm to elderly people and people with neuromuscular or 
orthopaedic disease in a clinical setting. 
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