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ABSTRACT 

 
For COVID-19 prevention and treatment, it is essential to 

screen the pneumonia lesions in the lung region and analyze 

them in a qualitative and quantitative manner. Three-

dimensional (3D) computed tomography (CT) volumes can 

provide sufficient information; however, extra boundaries of 

the lesions are also needed. The major challenge of automatic 

3D segmentation of COVID-19 from CT volumes lies in the 

inadequacy of datasets and the wide variations of pneumonia 

lesions in their appearance, shape, and location. In this paper, 

we introduce a novel network called Comprehensive 3D 

UNet (C3D-UNet). Compared to 3D-UNet, an intact 

encoding (IE) strategy designed as residual dilated 

convolutional blocks with increased dilation rates is proposed 

to extract features from wider receptive fields. Moreover, a 

local attention (LA) mechanism is applied in skip connections 

for more robust and effective information fusion. We conduct 

five-fold cross-validation on a private dataset and 

independent offline evaluation on a public dataset. 

Experimental results demonstrate that our method 

outperforms other compared methods. 

 

Index Terms —3D COVID-19 segmentation, CT image 

analysis, deep learning 

 

1. INTRODUCTION 

 

The recent spread of COVID-19 throughout the entire 

world is cause for great concern. Although the real-time 

reverse transcriptase polymerase chain reaction (RT-PCR) is 

the gold standard for diagnosing COVID-19, computed 

tomography (CT) can provide valuable pneumonia lesion 

information in a faster manner. Further analysis of CT images 

can help establish computer-aided diagnosis (CAD) systems 

for quantitative and qualitative pneumonia evaluation [1].  

The fine-detailed regions of the lesions are critical for 

exploiting CT volumes. On the other hand, manually 
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outlining the lesions is time-consuming, even for experienced 

physicians. Generally, fast and automatic segmentation 

algorithms are expected to solve the above problems [2]. 

Recently, medical-image segmentation has developed 

rapidly, based on the extensive application of deep-learning 

models [3]. UNet has proven to be the most successful and 

efficient network architecture in many medical-image 

segmentation tasks [4, 5, 6]. Lately, researchers have 

conducted studies on COVID-19 segmentation, based on 

UNet architectures and other methods [7, 8]. Voulodimos et 

al. [7] evaluated the fully convolutional network (FCN) and 

UNet on a public COVID-19 segmentation dataset [9]. Yao 

et al. [8] built a framework to augment the training data with 

relevant knowledge from normal CT slices and trained a 

model to segment COVID-19 lesions, based on this 

framework. Wang et al. [14] proposed a 2D segmentation 

model named COPLE-Net and a noise-robust self-ensemble 

strategy. Zhou et al. [15] proposed a three-way segmentation 

network. 

The above methods conduct COVID-19 segmentation in 

a 2D manner. Thus, the abundant 3D anatomic information in 

the lung region and pneumonia lesions has not been exploited. 

The main challenge of 3D COVID-19 segmentation is that 

the pneumonia lesions in the CT volumes exhibit wide 

variations in appearance, size, shape, and location in the lung 

region [1]. 

In this study, we develop a novel network called 

Comprehensive 3D-UNet (C3D-UNet) for robust and 

accurate 3D COVID-19 segmentation. Specifically, the 

proposed method makes two main contributions. First, we 

introduce an intact encoding (IE) strategy [12] in the down-

sampling branch. A novel residual dilated convolution block 

with increased dilation rates is designed, enlarging the size of 

the receptive field in the shallow layers. Second, a local 

attention (LA) mechanism [10] is applied in the skip 

connection to fuse deep and shallow information, making 

feature extraction more efficient. Moreover, multi-layer 

outputs are all leveraged to predict the final lesion mask, 

which also enables the network to be trained using multi-level 

deep supervision. 
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We conducted extensive experiments to evaluate the 

effectiveness of the proposed method. The results of five-fold 

cross-validation on a private dataset and an independent 

offline evaluation on a public dataset show that our method 

achieves state-of-the-art performance. 

 

2. METHOD 

 

In this section, we will detail the C3D-UNet framework 

and elaborate on its mechanism for achieving more accurate 

and sophisticated 3D boundaries of pneumonia lesions.  

 

2.1 C3D-UNet 

The framework of the proposed C3D-UNet is illustrated 

in Fig. 1. The UNet series has been one of the most successful 

segmentation network structures in recent years. In this study, 

we designed a novel 3D segmentation neural network for 

pneumonia, especially COVID-19 segmentation, using 3D-

UNet as the backbone.  

As shown in Fig. 1, our network can be divided into a 

down-sampling branch, which encodes the fed CT volumes, 

𝑉in, to feature maps 𝑀𝐶×𝐷×𝐻×𝑊, and an up-sampling branch, 

which converts the feature maps back to 3D masks, 𝑉out , 
with the same resolution as that of 𝑉in. 𝐶 denotes the channel 

number of the feature map, whereas 𝐷, 𝐻, and 𝑊 denote the 

depth, width, and height of the shape, respectively.  

The pneumonia lesions in CT volumes are dispersive 

and invasive, making it challenging to segment all of the 

lesion regions from an input patch. In the proposed 

framework, based on the residual convolution, we develop an 

IE strategy designed as residual dilated convolution blocks. 

In Fig. 1, each yellow arrow represents a residual dilated 

convolution block. Each block consists of three stacked 

dilated convolutional layers. Instead of stacking layers with 

the same dilation rate of 2 in each block, which will suffer 

from the gridding effect [11], we stack three layers with 

increasing dilation rates of 1, 2 and 3 in our blocks.  

As illustrated in Fig. 2, our strategy achieves the same 

receptive field of 13 voxels and simultaneously utilizes 

information from all the voxels. Thus, the lower layers, rather 

than only the very deep layers in the network, can also receive 

sufficient and useful global information. This will be 

leveraged to help improve the segmentation performance by 

the skip connection and deep supervision, introduced next. 

Although the resolution and contextual information of 

feature maps can be recovered by up-sampling, most of the 

texture information is still lost. Skip connections can fuse the 

Fig. 2. Comparison of the receptive field and used 

pixels. Upper: using different rate of 1,2,3; Below: using 

same dilation rate of 2. The deeper the color, the more 

used time the pixel. 

 

Fig. 1. Framework of the proposed C3D-UNet 

Fig. 2. Comparison of the receptive field and the used 

pixels. Upper: using different rates of 1, 2, and 3; lower: 

using the same dilation rate of 2. The deeper the color, 

the more times the pixel is used. 

 

Fig. 2. Framework of the proposed C3D-UNet 
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texture information from the down-sampling branch with the 

contextual information from up-sampling, by concatenating 

the feature maps. However, the texture information in 

different regions should make different contributions to the 

lesion segmentation.  

In the proposed method, the LA map generated from the 

up-sampling branch can highlight the local and important 

lesion regions in the features from the down-sampling branch 

 

2.2 Loss Function 

Loss functions can be built by calculating the difference 

between the predicted 3D masks 𝑉out  and the ground-truth 

mask 𝑉GT. In this study, we minimize the binary cross entropy 

between 𝑉out and 𝑉GT.  

Deep supervision is applied to avoid gradient 

exploration and make the model converge faster. The multi-

level features in the up-sampling branch are utilized and 

aggregated to generate the final predicted mask in the training 

stage. The final loss function can be represented as follows: 

𝐿(𝑉out , 𝑉GT) = ∑ 𝑤𝑖 ∙ 𝐿(𝑉out,𝑖  , 𝑉GT,𝑖)

4

𝑖=1

 , 

where the weights {𝑤𝑖|𝑖 = 1, 2, 3, 4} equal 1 for the last layer 

output, and 0.5, 0.25, and 0.125 for the outputs of the previous 

layers,  

𝐿(𝑉out,𝑖  , 𝑉GT,𝑖) =  ∑ −𝑝𝑛 𝑙𝑜𝑔(𝑔𝑛) + (1 − 𝑝𝑛) 𝑙𝑜𝑔(1 − 𝑔𝑛) ,

𝑁𝑖

𝑛=0

 

where 𝑝𝑛  and 𝑔𝑛  are the prediction and ground truth for 

voxel 𝑛 in layer 𝑖, respectively. The ground truth for layer 𝑖 
is generated by resizing the original mask to the same size as 

the prediction in layer 𝑖. 𝑁𝑖 represents the number of voxels 

in the prediction or ground truth in layer 𝑖. 
 

3. EXPERIMENTAL RESULT 

 

3.1 Datasets 

 
We collected one private COVID-19 dataset from 

several hospitals; the dataset contained 115 CT volumes 

corresponding to different patients infected by COVID-19. 

Pneumonia was confirmed in all patients via RT-PCR. All 

lesion boundaries were carefully drawn by experienced 

radiologists as ground-truth segmentation labels. This private 

dataset was used for five-fold cross-validation. 

To further validate the proposed method, we conducted 

an external evaluation using a publicly available COVID-19 

segmentation dataset [9]. This dataset consists of 10 CT 

volumes of confirmed COVID-19 patients. The lungs and 

areas of infection were labeled by two radiologists and 

verified by an experienced radiologist. 

 

3.2 Data Preprocessing 

 
Some data preprocessing strategies are applied to make 

the trained model more robust. First, lung-region coarse 

segmentation is executed via binarization, a morphological 

operation, and a region-growing algorithm in a step-by-step 

manner. Then, the resolution is normalized to make the data 

isotropic, with a voxel size of 1 mm × 1 mm × 1 mm . 

Finally, the voxels in each CT volume are normalized to a 

range of (0, 1) to aid convergence. 

After all of these preprocessing steps, 80 × 128 × 224 

patches are randomly cropped from the raw CT volumes, 

augmented by flipping and rotation, and fed into the network 

for training.  In the validation stage, each patch was sampled 

in a step of half of its shape. The final prediction mask of the 

entire CT volume was produced by jointing the output 

patches and voting the overlapping voxels. 

 

3.3 Implementation Details 

 
To evaluate the performance and effectiveness of the 

proposed C3D-UNet, we conducted five-fold cross-

validation on the private dataset for a reasonable comparison 

with two segmentation baselines, i.e. 3D-UNet and nnUNet.  

All the models were implemented using Pytorch and 

trained on NVIDIA RTX 2080Ti GPUs. For fair comparison, 

the loss function and hyper parameters remained unchanged 

when training each model. The loss of each model was 

minimized by the stochastic gradient descent (SGD) 

optimizer under an initial learning rate of 0.001 and a decay 

rate of 10e-7. Each model was trained for 250 epochs. 

 

3.4 Evaluation Metrics and Result 

 
We used several common metrics for segmentation-

result evaluation, including the Dice similarity coefficient 

(DSC), Jaccard similarity coefficient (JSC), and the 

Hausdorff distance (HD). Table 1 shows the evaluation 

results for both the private and public datasets. By observing 

the results, two main conclusions can be drawn:  

Model DSC (%) JSC (%) HD (mm) 

Results on private dataset 

3D-UNet 68.43 ± 4.12 54.85 ± 4.10 24.79 ± 7.99 

nnUNet 70.59 ± 3.97 57.89 ± 4.10 22.69 ± 7.42 

C3D-UNet 

(ours w/o IE) 
70.52 ± 3.44 57.59 ± 3.74 22.41 ± 6.82 

C3D-UNet 

(ours w/o LA) 
71.80 ± 2.87 58.98 ± 2.88 20.92 ± 6.66 

C3D-UNet (ours) 𝟕𝟑. 𝟒𝟏 ± 𝟐. 𝟗𝟗 𝟔𝟎. 𝟕𝟕 ± 𝟑. 𝟐𝟒 𝟏𝟖. 𝟕𝟑 ± 𝟕. 𝟐𝟏 

Results on public dataset  

3D-UNet 79.84 67.21 11.78 

nnUNet 82.37 70.52 6.67 

C3D-UNet (ours) 𝟖𝟐. 𝟗𝟏 𝟕𝟏. 𝟐𝟓 𝟔. 𝟑𝟎 

Table 1. Evaluation results of ablation study 
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(1) The proposed C3D-UNet achieves both higher DSCs 

and JSCs and lower HDs than 3D-UNet and nnUNet.  

(2) In the ablation experiments, the performances of 

C3D-UNet without IE and without LA are both inferior to 

those of the original C3D-UNet. This phenomenon reveals 

that IE and the LA mechanism are both essential and critical 

for our method. 

Furthermore, we reviewed state-of-the-art methods for 

COVID-19 segmentation, as listed in Table 2. Except for 

Muller et al. [13] and our method, the other studies performed 

COVID-19 segmentation in a 2D manner. 

Fig. 3 shows the segmentation results of two 

representative examples from the private dataset: a severely 

ill patient and a moderately ill patient, shown in the left and 

right columns, respectively. The obtained and the ground-

truth lesion boundaries are outlined in red and green, 

respectively.  

It can be seen that the proposed C3D-UNet can segment 

the lesion regions more accurately than both 3D-UNet and 

nnUNet. For example, both 3D-UNet and nnUNet have some 

mis-segmented regions, as indicated by the yellow arrows. In 

addition, the moderate patient contains only some slight 

lesions appearing as ground-glass nodules, most of which are 

difficult to annotate, even by experienced radiologists. 

However, all of the methods, especially C3D-UNet, could 

successfully identify these lesions (see regions indicated by 

the red arrows). 

 

 

Literature Dataset Method Result 

Yao et al. 

[8] 
Coronacases [9] 

VAE, 

nnUNet 
DSC: 68.7% 

Muller et al. 

[13] 
Coronacases [9] 

Data augmentation, 

3D-UNet 
DSC:76.1% 

Wang et al. 
[14] 

Private 2D COPLE-Net DSC:80.29% 

Zhou et al. 

[15] 
Private 

multi-view  

2D-UNet 
DSC:90.3% 

Proposed 
Private, 

Coronacases [9] 
C3D-UNet DSC:82.91% 

 

4. CONCLUSIONS 

 

In this study, we developed a novel C3D-UNet for 

COVID-19 segmentation in a 3D manner. Specifically, the 

designed framework had two main elements: an IE strategy, 

designed as a residual dilated convolution block with 

increased dilation rates for a wider receptive field, and a LA 

mechanism, which transferred information from the up-

sampling branch to the down-sampling branch for effective 

information fusion.  

Ablation studies have indicated that both of the above 

two elements are critical to the performance improvement of 

the proposed model. Moreover, experimental results of a five-

fold cross-validation on a private dataset and an offline 

evaluation on a public dataset have demonstrated that our 

method outperforms the current state-of-the-art methods in 

3D COVID-19 segmentation tasks. 

Fig. 3. Segmentation results of severely ill (left column) and moderately ill (right column) patients from private data. The 

obtained and ground-truth boundaries are outlined in red and green, respectively.  

 Table 2. State-of-the-arts in COVID-19 segmentation 
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