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Abstract— Inpatient falls are a serious safety issue in hospi-
tals and healthcare facilities. Recent advances in video analytics
for patient monitoring provide a non-intrusive avenue to reduce
this risk through continuous activity monitoring. However, in-
bed fall risk assessment systems have received less attention
in the literature. The majority of prior studies have focused
on fall event detection, and do not consider the circumstances
that may indicate an imminent inpatient fall. Here, we propose
a video-based system that can monitor the risk of a patient
falling, and alert staff of unsafe behaviour to help prevent falls
before they occur. We propose an approach that leverages recent
advances in human localisation and skeleton pose estimation
to extract spatial features from video frames recorded in a
simulated environment. We demonstrate that body positions
can be effectively recognised and provide useful evidence for fall
risk assessment. This work highlights the benefits of video-based
models for analysing behaviours of interest, and demonstrates
how such a system could enable sufficient lead time for
healthcare professionals to respond and address patient needs,
which is necessary for the development of fall intervention
programs.

I. INTRODUCTION

Falls in the ward, in particular those from the bed, are
a persistent problem and are commonly associated with
injuries such as soreness and bone fractures and often result
in a prolonged hospital stay. In mental health hospitals and
some psychogeriatric units, these events are of particular
concern due to patient cognitive impairment, dizziness or
vertigo [1], [2]. Such incidents are one of the main concerns
for all staff involved in the care of patients, and can lead
to anxiety or guilt, and potentially litigation. In most hospi-
tals, medical staff follow well-defined protocols to prevent
falls, however research into systems capable of generating
immediate alerts to enable medical assists to prevent falls
has received limited attention from researchers.

Considering the importance of patient behaviour moni-
toring, several in-clinic patient monitoring systems using
computer vision and deep learning have been introduced
to provide an objective assessment of a patient’s behaviour.
These vision-based systems have attracted great attention due
to their non-invasive nature and have shown promising results
in analysing patient-specific pose [3] (for example, sleeping
pose [4], [5]), epileptic patients [6], breathing disorders [7]
and infant motions [8]. Furthermore, camera-based fall de-
tection [9]–[11] and fall prediction systems [12], [13], which
detect when a fall occurs rather than seeking to predict a fall
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Fig. 1. Overview of the proposed fall risk monitoring system. Given a
single RGB image collected with a custom camera system placed in the
ceiling, the system generates 2D human pose predictions. Next, the relative
position of the human and the bed is computed to predict the risk of falling.

before it happens, have also received considerable attention
recently and have achieved effective results using existing
simulated datasets [14]–[16], or synthetic libraries [11], [17].
However, while human pose estimation has become the de-
facto standard for inpatient analysis, its application to the
prevention of falls from the bed remains limited.

To prevent falls, some systems detect the position in
which the patient is lying with respect to the edge of the
bed, or detect the patient’s bed-exit behaviour. In these
scenarios, the system monitors a key human pose or human
motion to predict the risk of falling. These studies have used
commercial pressure mat systems to detect the human off-
bed position [18]; however, pressure pads have been shown
to generate a high volume of false alarms leading to alarm
fatigue [19]. On the other hand, camera-based systems seek
to detect a sitting posture [20] or the bed exit action from
a sequence of human images [21]. Although, many hospital
patients fall as they get out of bed, there are risk factors for
falling such as uncontrolled motions caused by agitations,
restless sleep and abnormal dreams that lead to a patient
trying to climb out of the bed for protection, or ”jumping”
from the bed. Patients attempting to perform these unassisted
activities account for a large proportion of inpatient falls, and
they are the focus of this paper.

In this paper, we explore the feasibility of adapting pose-
based frameworks to identify patients’ behaviour and assess
the risk of falling from the bed.

Our main contributions are summarized as follows:
1) We introduce a flexible vision-based fall risk detec-

tion system capable of detecting actions in a novel
simulated environment that may indicate an imminent
inpatient fall.

2) We propose a robust but simple non-obtrusive moni-
toring system to capture relative body position infor-
mation to assess the risk of falling from a bed.
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Fig. 2. Human and bed localisation. A dynamic and fast instance
segmentation approach is used to localise the region of interest.

Fig. 3. Selected samples of human actions collected in the simulated
dataset. Top: Not at risk of falling. Bottom: At risk of falling.

II. MATERIALS AND METHODS

In this paper, we propose a non-invasive landmark-based
approach to capture in-bed human pose, and predict whether
the human in an image will fall from the bed they are
currently occupying.

A. Fall prevention simulated dataset and pre-processing

Existing vision-based fall detection datasets do not cover
inpatient fall events, or examples of patients at risk of falling.
Considering this limitation, we designed and collected a sim-
ulated dataset with the actions of interest represented by two
classes, not at risk and at risk of falling. To generate this data
two main stages were covered: i) recruitment, experimental
setup, and data collection, and ii) data annotation and pre-
processing.

We collect data from participants in a simulated hospital
environment. Volunteers lie down on the bed and simulate
in-bed patient actions such as trying to climb out of the bed
for protection, turning around, exiting the bed, and falling.
All images and videos are collected with a custom recording
device equipped with a Microsoft Azure Kinect camera, and
are saved for a further prepossessing phase.

To estimate relative positions of the human and bed, we
first define the region of interest as the location of the
bed that contains the participant. This process helps to deal
with different camera-bed viewing angles, and changes in
the inclination angle of the bed which may impact the risk
assessment. We perform object boundary detection using
SOLO [22], which is a dynamic and fast state-of-the-art
instance segmentation method. In our network, we use pre-
trained weights, trained on the COCO dataset [23], to detect
the human and the bed. Then, we crop and resize all images

Fig. 4. Representation of the human key points detected in a selected
image.

to a resolution of 1080×828 pixels as input to the system.
Fig. 2 depicts selected examples of the participant and
bed detection. Finally, each image is separated into two
classes to conduct the proposed analysis: at risk and not
at risk of falling from the bed, as illustrated in Fig. 3. We
address the data imbalance in our dataset by adopting data
augmentation techniques including oversampling and adding
Gaussian noise to images to obtain the same number of
samples for both classes. We argue that this pre-processing
step does not impact generalization.

B. Fall risk assessment system

Fig. 1 shows the overall architecture of our framework
which has three main modules: i) 2D key-point estimation,
which takes an RGB image and produces body joint locations
in 2D space; ii) A human-bed relative position estimation and
feature engineering; and iii) a fall risk classifier which com-
bines human pose and relative position features to accurately
discriminate between at risk and not at risk cases. In the
following, we describe in detail the individual components
of our framework.

1) Human localisation and pose identification: Quantify-
ing a person’s posture and limb articulation is useful for un-
derstanding patient behaviour. Human pose estimation from
static images has shown strong performance in detecting
positions of interest for the analysis of seizure disorders [6]
and bed-exit posture [20].

We aim to employ a robust 2D pose prediction technique
to extract consistent poses from a hospital environment,
where challenges such as self-occlusion and similarities be-
tween the background and foreground are present. We adopt
the Mask-RCNN architecture [24] to predict 2D locations of
body joints and their corresponding confidence scores, which
is a lightweight, yet highly effective approach implemented
in Detectron2 [25]. Here, a keypoint location is modeled as a
one-hot mask where Mask-RCNN predicts k masks, one for
each of K keypoints (17 key points coordinates in this study).
We fine tune a pre-trained Mask-RCNN model trained on the
COCO dataset [23], enabling the model to detect keypoints
clearly in our dataset. When participants perform activities
such as turning around, their body parts may overlap and
some key points cannot be detected clearly. Based on an
analysis of the pose estimation results, we define the most
stable coordinates for a later feature engineering step. Fig. 4
illustrates the keypoint layout and a detected human pose.

2) Relative position determination and feature engineer-
ing: Human body postures during events such as the patient
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Fig. 5. Representation of the distance feature estimation. Head and knees
detected by the pose estimation algorithm are marked as green dots, and all
lines represent the contour of the detected bed.

TABLE I
MULTI-FOLD CROSS-VALIDATION PERFORMANCE (10-TIME AVERAGE)

Test Accuracy (%)
Feature representation Light GBM SVM

Dis < Knee,Bed > 94.44 91.11
Dis < Knee,Bed >+Dis < Head,Bed > 96.11 92.89
17Keypoints+Dis < Knee,Bed > 96.67 93.89
17Keypoints+Dis < Knee,Bed >+Dis < Head,Bed > 97.22 94.20

Fig. 6. Qualitative results of human pose estimation on patients not at risk
and at risk of falling (trying to climb out of the bed for protection).

climbing out of the bed are complex and varied, so it is
essential to define a criteria to classify whether a patient is
at risk of falling from the bed or not. One criteria is to track
and estimate how much of the knee is outside of the bed.

To calculate the distance between the knee and the bed,
we need to determine which side of the bed a patient is most
likely to fall. As shown in Fig. 5, the left line, middle line
and right line of the bed define the bed position, and the
head and knees are marked as green dots. When the head
and the two knees are all on the left of the middle line, the
human body is defined as being on the left side of the bed.
When the head and two knees are all on the right of middle
line, the human body is defined as being on the right side
of the bed. If the human body is on the left side of the bed,
we will calculate the distance between the two knees and
the left line of the bed. If the human body is on the right
side of the bed, we will calculate the distance between the
two knees and the right line of the bed. Defining where the
human body is located can also help to remove unnecessary
features and decrease feature dimensionality.

The distance feature is the distance between the knees and
the bed boundary. Based on the human body’s location on
the bed, we can determine which boundary should be used
to calculate the distance between the knee and the bed. If the
knee is outside of the bed, the distance value is negative and
if the knee is inside the bed, the distance value is positive.

3) Fall risk classification: Each output feature related to
the human pose coordinates and relative position between the

body and the bed (i.e. distance features) is fed to a classifier
to learn probabilistic distributions with respect to the target
class. We adopt the LightGBM classifier [26] as a fast,
distributed, high performance implementation of gradient
boosted trees for supervised classification with robustness to
overfitting. The following setting is used in the experiment:
boosting type (gradient boosting decision tree), boosting
learning rate (0.1), number of boosted trees to fit (100),
maximum tree leaves (31), maximum tree depth (no limit).
We also use a traditional support vector machine (SVM)
classifier with automatic Bayesian optimization: kernel (sig-
moid), shrinking (true), cache size (200).

III. EVALUATION

A. Experimental setup

To evaluate and compare the most discriminative features
from the landmark-based analysis, we adopt four feature sets:
i) the distance between knees and the bed; ii) set (i) plus the
distance between the head and the bed; iii) set (i) plus 17
body keypoint coordinates; and iv) set (iii) plus the distance
between the head and the bed. These feature sets are listed
in Table I.

As an ablation study, we investigate a region-based ap-
proach by training a ResNet50 [27] architecture to extract
a spatial representation directly from images, and perform
classification using a fully connected layer with a sigmoid ac-
tivation function. This model was implemented in Keras [28]
and trained by optimizing the categorical cross-entropy loss
with the Adam optimizer [29].

Both models (landmark-based and region-based), are as-
sessed through a 10-fold cross validation to ensure that the
training and test data is disjoint. For each fold, the data
sample of each class is randomly split into 90% for training
and 10% for testing.

B. Experimental results and discussion

While general pose estimation frameworks are effective
when subjects are located in uncluttered settings, they can
be unreliable when applied to noisy environments such
as patient monitoring rooms. This can cause even more
confusion when multiple frames are fed into the framework,
thus in our study we consider a static scene. From the pose
estimation results on the dataset, we confirm that knee points
are the most stable keypoints, so we choose to use the knee
as a reference to classify at risk events and use the head
location to identify the human position on the bed. Selected
samples showing estimated joint locations are presented in
Fig. 6.

The region-based approach achieved an average accuracy
of 65.8% on the test set, whereas the landmark-based ap-
proach using LightGBM achieved 97.22% accuracy. The
cross-validation performance for each set of features and the
proposed classifiers are shown in Table I. Our landmark-
based results indicate that larger feature sets can improve
system performance. The best accuracy is obtained from
the fourth feature set using 17 keypoint coordinates, the
distance between the knee and the bed and the distance
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between the head and the bed. This performance is likely
due to the distance features indicating whether key body
parts overlap the boundary of the bed, which indicates a high
probability of falling from the bed. This relative position
information is hard to capture without feature engineering
and is the main reason that the region-based approach shows
low performance.

In most hospitals, there are programs and policies for fall
prevention, but there is limited research into systems capable
of generating immediate alerts for medical assistance to
prevent falls. A video-based alarm system for fall prevention
similar to our proposed framework needs the ability to detect
highly accurate relative human position in the bed. Such a
system is able to issue an alert as early as possible once
it detects a position where there is a high risk of falling.
Further, it is envisioned that our approach is cost effective
and low maintenance.

The majority of inpatient fall studies focus solely on fall
risk factors but may not identify potential causal factors for
falls (e.g. what triggered the fall) which is necessary for
fall intervention programs. An interesting direction for future
research is the creation of libraries of behaviours to identify
these factors and patients at high risk of falling in the early
stages of monitoring.

IV. CONCLUSIONS
In this paper, we introduce a vision based monitoring

system that incorporates state-of-the-art computer vision
techniques to assess the risk of falling from a bed. Con-
sidering the lack of datasets to assess fall risk and fall
prevention, we introduce a simulated dataset that includes in-
bed human actions such as trying to climb out of the bed for
protection, turning around, and bed-exit events. Our results
in this particular case study show a promising technology
that can have a positive impact on monitoring inpatients at
risk of falling. Our proposed system has a high accuracy,
resulting in lower false alarm rates for medical staff and
thus a reduction in the likelihood of alarm fatigue.

Ethics statement: The experimental procedures involv-
ing human subjects described in this paper were approved
by the CSIRO Health and Medical Human Research Ethics
Committee (CHMHREC).
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