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Abstract— Multi-modality magnetic resonance image (MRI)
registration is an essential step in various MRI analysis tasks.
However, it is challenging to have all required modalities in
clinical practice, and thus the application of multi-modality reg-
istration is limited. This paper tackles such problem by propos-
ing a novel unsupervised deep learning based multi-modality
large deformation diffeomorphic metric mapping (LDDMM)
framework which is capable of performing multi-modality
registration only using single-modality MRIs. Specifically, an
unsupervised image-to-image translation model is trained and
used to synthesize the missing modality MRIs from the available
ones. Multi-modality LDDMM is then performed in a multi-
channel manner. Experimental results obtained on one publicly-
accessible datasets confirm the superior performance of the
proposed approach.

Clinical relevance—This work provides a tool for multi-
modality MRI registration with solely single-modality images,
which addresses the very common issue of missing modalities
in clinical practice.

I. INTRODUCTION

Multi-modality magnetic resonance image (MRI) registra-
tion plays an important role in a variety of tasks such as atlas
alignment [1], image fusion [2] and distortion correction [3].
In addition, utilizing multi-modal registration to incorporate
information from MRIs of different modalities can improve
the performance of various subsequent MRI analysis tasks
such as brain segmentation and surgical planning [4]. How-
ever, MRIs of multiple modalities are kind of rare in clinical
practice, and thus the application of multi-modal registration
has been limited.

One way to deal with such problem is to discard the miss-
ing modality MRIs and directly utilize the available ones for
registration. This kind of approaches can be mainly divided
into three categories, including information theory based
approaches, modality reduction approaches and feature-based
approaches. Information theory based approaches generally
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use information theory measures to evaluate the misalign-
ment between images. The most popular measures are mutual
information (MI) and normalized mutual information (NMI)
[5]. However, unlike intra-modality similarity measures such
as the sum of squared difference (SSD), MI and NMI cannot
directly nor efficiently quantify local anatomical similarity
[6]. Modality reduction approaches convert multiple modal-
ities to a completely new one [7] or one of the existing
modalities [8] before registration. Although this conversion
simplifies the alignment process, losing anatomical informa-
tion may reduce the registration accuracy. Different from
the above two kinds of methods, feature-based approaches
extract features such as morphological features [9] and sparse
keypoint features [10] from multi-modal MRIs for regis-
tration. Extracting modality-independent features is time-
consuming and laborious, therefore its application is limited.

To avoid the aforementioned problems, image synthesis
based multi-modality registration approaches have been pro-
posed. In these methods, proxy MRIs of the missing modal-
ities are firstly generated using synthesis approaches. Then
multi-modality registration is performed on the generated
proxy MRIs and existing single-modality ones via multi-
channel registration. For instance, Roy et al. [11] proposed a
MR-CT registration approach using intensity patches within
an expectation maximization framework to synthesize CT
images from T1-weighted (T1w) MRIs. Chen et al. [6]
proposed a multi-modality registration algorithm using a
trained regression forest to create proxy images.

With the advent of generative adversarial network (GAN)
[12], using it to synthesize images becomes a hot research
topic. It has already been widely used in medical image
synthesis and started to be applied to multi-modal registra-
tion. For instance, Tang et al. [4] proposed a multi-modality
registration framework using CycleGAN to synthesize multi-
modality atlases from T1w images. Qin et al. [13] proposed
an unsupervised deformable registration algorithm for multi-
modality atlases using latent shape representation. In this
paper, we propose a new diffeomorphic framework for multi-
modality MRI registration using unsupervised image-to-
image translation. A deep learning based multi-modality un-
supervised image-to-image translation synthesizer (MUTS)
is introduced and combined with large deformation diffeo-
morphic metric mapping (LDDMM) [14] to convert T1w-
only registration into T1w and T2-weighted (T2w) combined
multi-modality registration. This proposed framework can be
easily extended to other modalities.
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Fig. 1. The proposed framework includes a MUTS module and a multi-modality LDDMM registration (LDDMM-MM) module. x̂1 and x̂2 are translated
and reconstructed images. For two to-be-aligned T1w MRIs, the trained MUTS module is firstly adopted to synthesize the corresponding T2w MRIs. Next,
the LDDMM-MM module is adopted to perform registration using these four images in a multi-channel manner. Please note, when training the MUTS
module, LDDMM-MM is also performed after each epoch using the original T1w images and the synthesized T2w images to find the optimal MUTS for
LDDMM-MM.

II. METHOD

The proposed unsupervised image-to-image translation
based multi-modality LDDMM registration framework, as
shown in Fig. 1, consists of two modules including a
MUTS module and a multi-modality LDDMM (LDDMM-
MM) module. The MUTS module is used as a synthesizer
to generate T2w MRIs from T1w ones. To obtain the
synthesizer, a training dataset including both T1w and T2w
MRIs is used. After inputting two to-be-aligned T1w MRIs,
the LDDMM-MM module is adopted to perform registration
by assigning one channel with the original T1w images
and the other channel the corresponding synthesized T2w
images. Different from the aforementioned synthesizer based
multi-atlas registration methods, we perform LDDMM-MM
registration after each epoch in training MUTS to obtain an
optimal synthesizer for LDDMM-MM.

A. MUTS

The MUTS module was originally proposed by Huang
et al. [15] based on the assumption that unpaired images
of different modalities can be embedded into a domain-
invariant attribute (content) space and a domain-specific
attribute (style) space. For both modalities, as shown in
Fig 1, two encoders for encoding the attributes of these
two spaces are used, followed by a decoder to generate the
corresponding proxy images.

Let x1 ∈ X1 and x2 ∈ X2 denote unpaired images from
two different imaging modalities. As shown in Fig. 1, image
xi (i = 1, 2) is disentangled into content code Ci and style
code Si, where Eic and Eis respectively encode xi to Ci
and Si. The generator Gi generates images conditioned on
both content and style vectors. Image-to-image translation is
performed by swapping the style vectors across modalities.

For instance, the generator G1 acts on C1 and S2 so that x1
is translated to the target modality of x2. To train the image-
to-image translation framework, the overall loss function is
defined as a weighted sum of three components including the
in-domain reconstruction loss Lrec, cross-domain translation
loss Ladv and latent space reconstruction loss Llat, i.e.,

Ltotal = αLrec + βLadv + γLlat, (1)

where Lrec = L1
rec + L2

rec, Ladv = L1→2
adv + L2→1

adv and
Llat = Lc1lat + Ls1lat + Lc2lat + Ls2lat. Lirec is calculated as

Lirec = Exi∼Xi
‖Gi (Eci (xi) , Esi (xi))− xi‖1 (2)

to evaluate the dissimilarity between the synthesized proxy
image and original image, L1→2

adv is calculated as

L1→2
adv = Ec1∼p(c1),s2∼p(s2) [log (1−D2(x1→2))]

+Ex2∼X2
[log (D2(x2))]

(3)

to match the distribution of the translated image of x1 to the
image distribution in the domain of X2, The Lc1lat and Ls2lat
are respectively defined as

Lc1lat =
∥∥E2

c (G2(c1, s2))− c1
∥∥
1

(4)

and
Ls2lat =

∥∥E2
s (G2(c1, s2))− s2

∥∥
1
. (5)

B. LDDMM-MM

After employing MUTS to synthesize the T2w images,
LDDMM-MM is performed. Given two real-valued functions
I0Ti

and I1Ti
(i = 1, 2) defined on the background space

Ω ∈ R3, they respectively represent a 3D grayscale moving
image and a 3D grayscale target image of the i-th modality.
LDDMM-MM tries to find a diffeomorphism ϕ : Ω → Ω
such that I0Ti

◦ϕ−1 is well aligned to I1Ti
. The diffeomorphism
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ϕ = φ1 is calculated by integrating time-varying velocity
fields vt : Ω × t → R3 from t = 0 to t = 1 with the
following ordinary differential equation

ϕ = id+

∫ 1

0

vt(φt)dt, (6)

where id : Ω→ Ω is the identity mapping such that id(x) =
x, x ∈ Ω and φt = id+

∫ t
0
vτ (φτ )dτ , t ∈ [0, 1].

Let J tTi
= I0Ti

◦φt0 be the deformed template image at time
t, where φst = φt ·φ−1s , s ∈ [0, 1] represents a diffeomorphic
coordinate transformation from time s to time t, LDDMM-
MM finds the optimal time-varying velocity vector fields by
minimizing the following energy function,

E(vt) =
1

2

∫ 1

0

‖Lvt‖2L2dt+
1

2

2∑
i=1

1

σ2
i

M(J1
Ti
, I1Ti

), (7)

where M(J1
Ti
, I1Ti

) denotes the matching cost function used
to evaluate the misalignment between the target image I1Ti

and the deformed template image J1
Ti

, ‖·‖L2 denotes the L2

norm of square-integrable function, L denotes a differential
operator smoothing the velocity vector fields, and σi deter-
mines the weight of the matching cost function relative to
the regularization term of the i-th modality.

According to the work of [14], the derivative of E(vt) can
be calculated as

∇vEt = vt +K

(
2∑
i=1

ρ(t)∇J tTi

)
, (8)

ρ(t) = − 1

2σ2
(∂ITi

M(J1
Ti
, I1Ti

) ◦ φt1|Dφt1|), (9)

where K = (L†L)−1, L† denotes the adjoint of L, ∇J tTi

denotes the gradient of J tTi
, ∂ITi

M(J1
Ti
, I1Ti

) denotes the
Gateaux derivative of M(J1

Ti
, I1Ti

) and |Dφt1| denotes the
Jacobian determinant of φt1.

C. Implementation Detail
The MUTS module is trained using the default setting

presented in [15]. In our implementation, we pre-train MUTS
using paired T1w and T2w images, and the LDDMM-
MM registration is performed after each training epoch.
In the loss function, α = 25, β = 10 and γ = 0.1.
The training process is terminated when the mean value
of the Dice similarity coefficients between the deformed
segmentations of the moving images and the corresponding
manual segmentations of the target images on the validation
dataset reaches the maximum. For LDDMM-MM, a three-
stage cascading strategy is adopted. We set the number of
time-varying velocity vector fields to be 2, the matching
cost function to be SSD, and the weights of the SSD to
be σ1 = 0.01 and σ2 = 0.001 for T1w and T2w. All other
parameters are the same as those in [14] and [16].

III. EXPERIMENTAL RESULTS AND EVALUATION

A. Dataset and Evaluation Metric
We evaluate the proposed method using two datasets.

The first dataset consists of 16 subjects1 and for each one

1https://www.predict-hd.net/

both T1w and T2w 3D-volume MPRAGE images were
collected (image size: 190 × 230 × 180 mm3). For each
subject, a total of 14 brain regions have been manually
delineated. The second dataset is publicly available, known
as LPBA402, consisting of 40 T1w brain images (image size:
181 × 217 × 181 mm3). This dataset was created by the
Laboratory of Neuro Imaging at the University of Southern
California. For each of the 40 images, 56 brain regions were
manually labeled.

For LPBA40, we followed [17] to merge 56 labels into
7 larger ones. These two datasets were affinely aligned
(12 parameters) to the MNI152 space [18] and center-
cropped or center-padded into a size of 192 × 224 × 192
followed by intensity normalization. We used the first dataset
to train the MUTS module and performed LDDMM-MM
using a leave-one-out scheme on 10 images selected from
the second dataset. The Dice similarity coefficient (DSC)
between the manual segmentation of a testing target image
and the deformed manual segmentation of a moving image
was adopted to quantify the registration accuracy. Student’s t-
tests were performed to quantify the significance of all group
comparison differences.

B. Results and Discussion

To demonstrate the performance of our proposed frame-
work, we compared its registration results with the con-
ventional SSD based single-modality LDDMM registration
accuracy [14]. The comparison experiments were performed
on the original T1w images, namely LDDMM (T1w), as well
as the synthesized T2w images, namely LDDMM (T2w). All
group comparison results are listed in Tabel I. Evidently, the
MUTS based LDDMM-MM is superior to the conventional
SSD based single-modality LDDMM for either modality
(superior to T1w for five structures and superior to T2w for
four structures).

Specifically, for the frontal, parietal, temporal, cingulate
and hippocampus, the DSCs of MUTS based LDDMM-
MM approach are significantly higher than those of LD-
DMM (T1w) with p-values of 1.20× 10−24, 1.78× 10−16,
4.20 × 10−18, 2.40 × 10−17 and 5.98 × 10−15. Also, for
the parietal, temporal, putamen and hippocampus, the DSCs
of MUTS based LDDMM-MM approach are significantly
higher than those of LDDMM (T2w) with p-values of
4.24×10−4, 7.38×10−3, 6.24×10−20 and 4.89×10−17. In
addition, the mean DSC computed across all seven structures
of MUTS based LDDMM-MM is significantly higher than
those of conventional SSD based single-modality LDDMM
on both T1w and T2w with p-values of 1.43 × 10−24 and
3.08 × 10−12. Comparing the results of LDDMM (T1w)
with those of LDDMM (T2w), the mean DSCs of all seven
structures and the DSCs of four structures including the
frontal, parietal, occipital and cingulate of LDDMM (T2w)
are higher than those of LDDMM (T1w), suggesting the
effectiveness of MUTS in synthesizing T2w images in our
framework.

2http://www.loni.usc.edu/atlases/
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Fig. 2. Visualization results of the proposed LDDMM-MM framework against baseline methods.

TABLE I
THE MEAN DSC FOR EACH OF THE SEVEN STRUCTURES AS WELL AS

THE MEAN DSC COMPUTED ACROSS ALL SEVEN STRUCTURES,
OBTAINED FROM LDDMM (T1W), LDDMM (T2W) AND MUTS BASED

LDDMM-MM. BOLD FONT INDICATES STATISTICALLY SIGNIFICANT

GROUP DIFFERENCE.

LDDMM (T1w) LDDMM (T2w) LDDMM-MM
Frontal 0.904 (0.008) 0.910 (0.007) 0.909 (0.008)
Parietal 0.751 (0.024) 0.756 (0.024) 0.761 (0.025)

Occipital 0.768 (0.024) 0.775 (0.024) 0.768 (0.024)
Temporal 0.855 (0.011) 0.857 (0.012) 0.859 (0.011)
Cingulate 0.715 (0.030) 0.721 (0.032) 0.722 (0.031)
Putamen 0.760 (0.027) 0.747 (0.034) 0.761 (0.031)

Hippocampus 0.750 (0.028) 0.741 (0.033) 0.757 (0.027)
Mean 0.786 (0.011) 0.787 (0.011) 0.791 (0.012)

Visual comparisons of the registration results obtained
from the three registration methods on one representative
image, as well as the moving images, the target images and
the corresponding synthesized images are demonstrated in
Fig. 2. Clearly, the registration result of the proposed MUTS
based LDDMM-MM is the closest to the target image. In
addition, from Table I, although we can clearly see that the
DSC values of LDDMM (T2w) for the frontal and occipital
are the highest, especially for the occipital, with p-values
of 2.63 × 10−6 and 1.62 × 10−9 compared to LDDMM
(T1w) and LDDMM-MM, the overall registration accuracy
of LDDMM-MM is better than the other two methods. A
potential reason is that by applying MUTS to synthesize
the T2w images, additional anatomical information has been
introduced into the LDDMM-MM framework and thus re-
sulted in higher registration accuracy. For future work, we
will further validate the efficiency and robustness of the
proposed framework and test it on more clinical datasets.
Its application to MRIs of other types of modalities is also
one of our future endeavors.

IV. CONCLUSION

In this paper, we proposed a novel unsupervised multi-
modal image-to-image translation based LDDMM frame-
work for registering brain MRIs. Experimental results
demonstrated the superiority of our proposed framework
over other conventional approaches in terms of registration
accuracy.
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