
 

Abstract— Features extracted from the surface 

electromyography (sEMG) signals during the speaking tasks 

play an essential role in sEMG based speech recognition. 

However, currently there are no general rules on the optimal 

choice of sEMG features to achieve satisfactory performance. In 

this study, a total of 120 electrodes were placed on the face and 

neck muscles to record the high-density (HD) sEMG signals 

when subjects spoke ten digits in English. Then ten different 

time-domain features were computed from the HD sEMG 

signals and the classification performance of the speech 

recognition was thoroughly compared.  The contribution of each 

feature was examined by using three performance metrics, 

which include classification accuracy, sensitivity, and F1-Score. 

The results showed that, among all the ten different features, the 

features of WFL, MAV, RMS, and LOGD were considered to be 

superior because they achieved higher classification accuracies 

with high sensitivities and higher F1-Scores across 

subjects/trials in the sEMG-based digit recognition tasks. The 

findings of this study might be of great value to choose proper 

signal features that are fed into the classifier in sEMG-based 

speech recognition. 

Clinical Relevance — This pilot study proved that WFL, 

MAV, RMS, and LOGD might be the optimal features to extract 

from sEMG signals for sEMG-based speech recognition to 

achieve satisfactory performance in different applications. 

I. INTRODUCTION

In recent years, the development of speech recognition 
technology based on surface electromyography (sEMG) 
signals has been progressing rapidly [1, 2]. This technique 
requires extracting effective feature information from the 
sEMG signal and inputting it into the classifier for 
classification and recognition [3]. Therefore, feature extraction 
and classifier selection are two essential links, which have a 
great impact on the final recognition effect [4]. Feature 
extraction is an important method to extract useful information 
hidden in the sEMG signal [5]. Generally, features in the 
analysis of the sEMG signal are plentiful, and there are time-
domain, frequency-domain, time-frequency, and time-scale 
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[6]. In order to classify the sEMG signals successfully, the 
selection of the features is necessitated to be concerned 
prudently. However, many studies on the classification of 
sEMG signals have used feature sets containing a large 
number of redundant features, resulting in poor classification 
or excessive calculation [7, 8]. Therefore, it is necessary to 
study the effects of the features on speech recognition to keep 
away from using the bad features in the classification stage. 

In the field of speech recognition using sEMG signals, 
many efforts had been made to improve the classification 
effect by selecting multiple features, while there had few in-
depth studies which make quantitative comparisons of the 
effects of feature selection on recognition qualities. Soon et al. 
extracted six time-domain features from sEMG signals for 
classifying Malay words, but the features had inputted the 
classifier as a whole dataset and the contribution of individual 
feature to the classification result were ignored [9]. Srisuwan 
et al. investigated the performance of eight features using 
sEMG signals for classifying the Thai tonal sound [10]. 
However, only four electrodes were stuck on the neck of the 
subjects, and it had not been verified that the extraction of 
these features would have similar effects at different locations. 
Thus, further exploration was obliged to make up for the above 
shortcomings.  

In this paper, the High-Density (HD) sEMG signals were 
recorded by a total of 120 surface electrodes located on the 
facial and neck muscles when the subjects spoke ten digits in 
English. Then, ten time-domain features that were generally 
analyzed in sEMG signals were extracted to input into the 
LDA classifier to classify ten speaking tasks. Finally, the 
effectiveness of each feature was verified by using three 
performance metrics, they were classification accuracy, 
sensitivity, and F1-Score namely.  

II. METHODS

A. Signal Measurement

19 healthy subjects (twelve males, seven females) aged
from 22 to 26, with a mean age of 25.25, were recruited for the 
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experiments. All the subjects were kept in a healthy state and 
had no pronunciation difficulties. Before the experiment, all 
participants were fully informed of the experimental 
procedures, and they voluntarily signed the informed consent 
forms to allow the publishing of their data for research 
purposes. The protocol of this experiment was approved by the 
Institutional Review Board of Shenzhen Institutes of 
Advanced Technology, Chinese Academy of Science. 

B. Experimental Procedure

The subjects were covered by 120 channels of electrodes
from a multi-channel data acquisition system (TMSi, REFA, 
the Netherlands), which consists of two 4*5 matrices on the 
face region and two 5*8 arrays on the muscles in the front neck 
area (as shown in Fig. 1). The whole distribution of electrodes 
was almost 2-D with the horizontal and vertical distance 
between two adjacent electrodes both approximately 15mm, 
and electrodes arrays were separated into three types based on 
their locations, including the face-group (40 channels), neck-
group (80 channels), and whole-group (120 channels). The HD 
sEMG data was acquired from the high-density electrodes 
with a sampling rate of 2048 Hz for each channel, and all 
possible articulatory muscles on both sides of the face and 
neck were covered to ensure the completeness and fullness of 
data. A fabric electrode was attached on the left wrist of the 
subject as a reference to collect data. 

Figure 1. The positions of the electrodes in tasks 

Before the experiment, the subjects’ skin was prepared by 
wiping using an alcohol pad to minimize skin-to-electrode 
impedance between electrodes and skin, and they were 
required to sit on a chair quietly and maintain muscle 
relaxation. During the procedure, the sEMG signals in a silent 
mode were recorded with no speaking and body moving for 
almost 40 seconds, which is treated as the baseline. The 
subjects were required to complete ten sets of English 
pronunciation tasks, corresponding to the pronunciation of 
English digits from zero to nine. Each set of pronunciation 
tasks includes a repetition of 28 times, and each one-second 
speaking was followed by a three-second break. The HD 
sEMG signals were obtained by the group of electrodes 
distributed all over the whole face and neck when each 
recruited subject was doing speaking tasks in a normal volume. 

C. Signal processing and data analysis

The original HD sEMG signals were preprocessed by two
processes. First, a fourth-order bandpass Butterworth filter 
with a cut-off frequency of 50-500HZ was utilized, which can 
filter out low-frequency noise below 50HZ, such as 
interference from ECG and the artifacts. Then, the notch filter 
of 50HZ and it’s integer multiples were arranged to filter out 
the power line interference and it’s harmonics. After the 
preprocess, cleaner signals were obtained. The filtered signals 
of 28 repetitions were manually sliced for each digit with only 
the speaking parts reserved and recombine them. 
Subsequently, the sEMG features were calculated using a 

series of sliding windows segmented from the processed data 
with a length of 400 sampling points and an overlap-interval 
of 200 sampling points. The calculation of 10 time-domain 
features that contained the valuable information for speech 
recognition was based on the analysis windows. The 10 time-
domain features and their mathematical definition were as 
shown in Table I. 

TABLE I. TEN TIME-DOMAIN FEATURES WITH THEIR MATHEMATICAL 

DEFINITIONS [11] 

Afterward, 5-fold cross-validation was employed in this 
analysis to reduce the variability of the data and avoid over-
fitting. These datasets were subsequently input into the linear 
discriminant analysis (LDA) classifier for recognizing the 
speech.  Finally, to determine the effectiveness of each feature, 
three performance metrics, including classification accuracy 
(CA), sensitivity (Sen), and F1-Score (F1score) were applied, 

and they were mathematically expressed as in Table Ⅱ. tp 

represented the number of correct predictions per class in the 
multi-class confusion matrix, and α denoted the corresponding 
error values. 

TABLE II. THREE PERFORMANCE METRICS WITH THEIR 

MATHEMATICAL DEFINITIONS [12] 
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III. RESULTS

A. The comparison of classification accuracies across ten

features in recognizing ten English words

In this part, the classification accuracies of ten words using
ten features across one subject based on sEMG signals 
recorded from different regions were studied, as shown in Fig. 
2. The dots represented the classification accuracies of ten
words. The magenta dots, red dots, and blue dots signed the
CAs calculated by using sEMG signals collected from whole-
group, neck-group, and face-group, respectively. For the given
speaking task, the CAs from the whole-group could be found
to have better performance than the neck-group and face-
group. Besides, it was observed that the CAs showed a
decreasing trend from left to right (F1 to F10). Moreover, the
CA of F1 ranked number one with average accuracies higher
than 85%. Whereas F9 and F10 achieved apparently lower
CAs than the other eight features. Meanwhile, there were more
discrete dots of the CAs of F7, F8, F9, and F10. All the
mentioned circumstances could be clearly observed in all three
groups.

Figure 2. The comparison of classification accuracies of ten words using ten 

features across one subject with electrodes on different groups: (a) 120 

channels in total, (b) 80 channels on the neck, (c) 40 channels on the face 

B. Comparing the distributions of classification accuracies

of nineteen subjects using ten features

The average classification accuracies of ten words using ten
features across 19 subjects with electrodes on different groups 
were analyzed in this section for further exploring the 
influence of features on classification performance during 
speech recognition. The statistical distribution of the average 
CAs of all the ten speaking tasks across 19 subjects of 10 
features was shown in Fig. 3. The boxplot consists of five 
numerical positions, namely the minimum observation (lower 
edge), 25% quantile (Q1), median, 75% quantile (Q3), and 

maximum observation (upper edge). It was observed that the 
average CAs from the whole-group were higher than the neck-
group and face-group across all the features. Moreover, the 
values of CA gradually decreased from left to right (from F1 
to F10).  The CAs of F1 was the highest among the ten 
features, no matter for the whole-group, neck-group, or face-
group. A similar circumstance could also be found in Fig. 3(b) 
and Fig. 3(c). 

Figure 3. The distributions of classification accuracies of nineteen subjects 

using ten features with electrodes on different groups: (a) 120 channels in 

total, (b) 80 channels on the neck, (c) 40 channels on the face 

C. Classification performance of the ten features based on

Sensitivity and F1-Score metrics

To further analyze the performance of features, the ten
individual features were assessed with two additional metrics, 
namely the sensitivity and F1-Score, and the obtained results 
are shown in Fig. 4. The results showed that the highest values 
of sensitivity and F1-Score both appeared in F1. Besides, the 
values of sensitivity and F1-Score in F2, F3, and F4 were 
slightly smaller than in F1, which is as same as what could be 
noticed in the aforementioned CAs. It was noteworthy that the 
standard deviations of sensitivity and F1-Score achieved the 
smallest values in F1, and the values in F2, F3, and F4 were a 
little higher than in F1. Moreover, the sensitivity and F1-Score 
obtained for individual features across 19 subjects were ranked 
in decreasing order from F1 to F10 according to Fig.  4. Both 
the values of sensitivity and F1-Score showed bad 
performance in F7, F8, F9, and F10. 
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Figure 4.  Classification performance of the ten features based on 

Sensitivity and F1-Score metrics: (a) Sensitivity results; (b) F1-Score results 

IV. DISCUSSION

Features extracting from sEMG signals could deliver 
useful information hidden in the muscle activities [13]. Thus, 
the features extracted from the sEMG signals during the 
speaking tasks play an important role in speech recognition, 
which even have an enormous impact on the performance of 
recognition. In order to provide a reference for selecting 
features for subsequent research on using EMG signals for 
speech recognition, the performance of 10 time-domain 
features commonly utilized in the classification of speech 
recognition was compared in this pilot study.  

In this study, the classification accuracies of ten words 
using ten features across one subject based on sEMG signals 
recorded from different regions were first compared. Results 
showed that the CAs of F1 (WFL), F2 (MAV), F3 (RMS), and 
F4 (LOGD) always had better performance than the other six 
features with electrodes on different regions. The result was 
consistent with the fact that WFL, MAV, and RMS were 
suitable for identifying the flexion and extension of the elbow 
than ZC proved in Castro’s research [14]. For the sEMG 
signals collected at different electrode positions, the CAs 
obtained from the features extracted from them had similar 
characteristics. This outcome showed that the results in this 
article could be extended to different electrode positions, 
thereby avoiding the harm caused by ignoring electrode 
position changes that might affect the feature performance in 
Srisuwan’s study [10]. Besides, there was a similar trend on 
the average CAs across 19 subjects, which indicated that the 
relative magnitudes of the classification accuracy values when 
different subjects used these ten features for recognition were 
similar and not affected by individual differences as a whole. 
In order to evaluate the properties of the ten features in 
sensitivity and F1-Score, the histogram was represented. The 
results told the truth that a similar trend with the sensitivities 
and F1-Score where F1, F2, F3, and F4 gave better 
performance, just as same as what could be noticed in the 
aforementioned CAs. It is generally accepted that a single 
feature is outstanding when it achieved high classification 
accuracies with high sensitivity and high F1-Score across 
subjects/trials after been subjected to different testing 
conditions [12]. For the evidence provided above, the 
conclusion could be drawn that F1, F2, F3, and F4 might be 
the most suitable features to extract from surface EMG and 
input it into LDA classifier for speech recognition among the 
ten features compared in this paper.   

Results of this study can be widely used and applied in 
many sEMG signal classification studies, including medical 
and engineering applications, to keep away from using the bad 
features in the classification stage. However, features in the 
analysis of the sEMG signal are generally plentiful, but only 
ten time-domain features were considered in this pilot study, 
which might be the limitation. The limitation will be further 
studied in our future research. 

V. CONCLUSION

In this study, the performance of 10 time-domain features 

commonly utilized in classification in speech recognition was 

compared. The results confirmed that WFL, MAV, RMS, and 

LOGD might be the most appropriate features extracted from 

sEMG signals and input into the LDA classifier for speech 

recognition among the ten time-domain features compared in 

this paper. The conclusion might be of great benefit to select 

proper features in speech recognition based on sEMG signals. 
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