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Abstract— Stimulation of target neuronal populations using
optogenetic techniques during specific sleep stages has begun
to elucidate the mechanisms and effects of sleep. To conduct
closed-loop optogenetic sleep studies in untethered animals, we
designed a fully integrated, low-power system-on-chip (SoC) for
real-time sleep stage classification and stage-specific optical s-
timulation. The SoC consists of a 4-channel analog front-end for
recording polysomnography signals, a mixed-signal machine-
learning (ML) core, and a 16-channel optical stimulation back-
end. A novel ML algorithm and innovative circuit design
techniques improved the online classification performance while
minimizing power consumption. The SoC was designed and
simulated in 180 nm CMOS technology. In an evaluation using
an expert labeled sleep database with 20 subjects, the SoC
achieves a high sensitivity of 0.806 and a specificity of 0.947
in discriminating 5 sleep stages. Overall power consumption in
continuous operation is 97 µW.

I. INTRODUCTION

Sleep provides numerous physiological and cognitive ben-
efits. Consequently, scientists endeavor to both understand
the neural circuits that control sleep and develop interven-
tions that target these circuits to treat sleep disorders and
enhance benefits. Sleep is not a homogenous state; it is
composed of a sequence of rapid eye movement (REM) sleep
and three stages of non-REM sleep (N1, N2, and N3). Each
stage has a signature of electrical activity in the brain (EEG),
muscles (EMG), and eyes (EOG), collectively called the
polysomnogram (PSG), which is used for its classification.

Sleep interventions and causal investigations increasingly
rely on closed-loop paradigms in which a real-time sleep
stage classifier is used to deliver stage-specific stimulation.
For example, in humans, auditory or noninvasive electri-
cal stimulation applied in phase with the prominent 1-Hz
oscillatory brain activity of stage N3 can enhance long-
term memory [1], [2]. However, closed-loop human studies
linking sleep stages to cognitive benefits (Fig. 1, green) suffer
from irreproducibility [3], [4], perhaps in part due to the
rather nonspecific stimulation.

More precise interventions can be performed using opto-
genetics, where the activity of genetically-modified neurons
is controlled by light [5]. Closed-loop optogenetic studies
in transgenic mice have identified circuits controlling sleep.
For example, activation of orexin or noradrenergic neurons
during REM or N3 evokes transition to wakefulness [6].
However, while these closed-loop rodent studies link sleep
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stages to the underlying neuronal populations (Fig. 1, blue),
limitations in the cognitive abilities of mice restrict assess-
ment of the effects of sleep on cognition.

Unlike mice and humans, an animal model capable of
higher-level cognitive function that is amenable to opto-
genetic techniques could directly test hypotheses linking
cognitive effects to neural circuits controlling specific sleep
stages (Fig. 1, red). Nonhuman primates (NHPs) meet these
requirements [7], [8]. However, due to their size, strength,
and dexterity, freely behaving and sleeping NHPs cannot be
tethered to a data acquisition, classification, and stimulation
system for closed-loop experiments. This hardware needs to
be embedded on the animal. Very little sleep research is
conducted in NHPs due to this technological barrier.

Fig. 1. Summary of how closed-loop studies in different animal models
(rodent, nonhuman primate, human) can assess causal relationships between
sleep stages, controlling neural circuits, and resulting cognitive benefits.

Therefore, in this work, we developed a system-on-chip
(SoC) for closed-loop optogenetic sleep research in un-
tethered subjects. The SoC was designed and simulated in
180nm CMOS technology. In a simulation with 40 nights of
recordings from 20 subjects, this design achieves a sensitivity
of 0.806 and a specificity of 0.947 in discriminating the 5
sleep stages (wake, REM, N1, N2, N3).

II. DESIGN

Fig. 2 depicts the system diagram of the SoC. The SoC
consists of an application-specific integrated circuit (ASIC)
and an open-source RSIC-V core. The ASIC integrates 4
channels of neural amplifiers, 20 channels of feature ex-
traction units, and 4 channels of optical stimulators. The
overall closed-loop operating principle is as follows. The
neural amplifiers acquire 4 PSG signals including 2 channels
of EEG, 1 channel of EOG, and 1 channel of EMG. Narrow-
band energy features are extracted from the amplified signals
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in the 20 feature extraction channels with programmable
frequency bins spaced in the natural logarithmic domain. The
time constant of the energy integral is 1 sec. The 20 energy
features are digitalized in a 10-bit successive approximation
register (SAR) analog-to-digital converter (ADC), and the
results are sent serially to the two-stage neural network
(NN) implemented in the RSIC-V. The NN consists of a
first stage that scores the sleep stages from the extracted
features and a second stage that classifies the sleep stages
from a succession of 30 outputs from the first stage. The final
detected sleep stage is used to trigger a pre-defined optical
stimulus controlled by a pulse-width modulation (PWM)
signal. The 4-channel stimulators are connected to an off-
chip LED array via a multiplexer. The simulated overall
system power is 97µW during a typical continuous operation.

Fig. 2. System diagram of the SoC for closed-loop optogenetic sleep
research. The SoC consists of an ASIC for bidirectional neural interface
and neural feature extraction and a RISC-V for NN-based sleep stage
classification and closed-loop control.

A pre-whitening technique was used in the EEG amplifier.
The power spectrum of EEG has a (1/f)n characteristic,
where n is between 2 to 4, while the noise floor of a
typical neural amplifier follows 1/f in the frequency range of
interest [9]. Thus, the signal-to-noise ratio (SNR) increases
as frequency decreases, which indicates that an amplifier
can be designed with a spectral whitening without scarify-
ing the overall SNR. Moreover, such whitening normalizes
the extracted energy features of different frequency bands,
which is beneficial for the NN. Simple pre-whitening can be
implemented by adding one dominant pole in the transfer
function, as illustrated in Fig. 3. In this work, a high-pass
frequency of 100Hz was used. The core low-noise amplifier
(A1) uses a complementary input MOSFET differential pair
biased in the subthreshold region for maximizing power and
noise efficiency.

Distinct brain oscillations exist in EEG with frequencies
spaced logarithmically. Thus, energy extraction with frequen-
cy bins spaced in the logarithmic domain can achieve a high
efficiency [10]. In this work, each energy extraction channel
consists of a 4th order stagger-tuned biquad filter, a Gilbert

Fig. 3. Schematic of the frequency shaping neural amplifier.

multiplier, and a leaky integrator, as shown in Fig. 4 (a). The
biquad filter can be programmed in 64 steps from 0.5Hz
to 100Hz, generated logarithmically as illustrated in Fig.
4 (b). The low and high cut-off frequencies can be inde-
pendently programmed. A subthreshold biased Gm-C block
was employed for an exponential I-V characteristic and high
power efficiency. The variation in the subthreshold region is
more prominent than the above threshold region. Instead of
calibrating these mismatches, we corrected the induced errors
by re-training the NN including the mismatches. This process
was combined with the subject-specific training, which is
required for achieving the optimal classification performance
for each subject. The extracted features were digitized by the
10-bit SAR ADC. Fig. 4 (c) shows a simplified schematic
of the designed ADC [11].

Fig. 4. (a) Block diagram of the feature extraction signal chain. (b)
Schematic and illustration of the log-domain biasing generation. (c) Sim-
plified schematic of the SAR ADC.

A novel two-stage NN architecture was proposed to
enhance the performance of sleep stage classification and
minimize the memory and computational costs. The first
stage NN was trained using the features and labels from
1-sec segments, and the second stage NN was trained using
the outputs from the first NN with labels from 30 sec data
segments. Neither signals nor features need to be buffered
for 30 sec, thus the memory requirement can be reduced.
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The first stage NN uses a feedforward architecture with three
fully connected layers consisting of 32, 18, and 5 neurons,
respectively. The second stage NN uses a long short-term
memory (LSTM) layer. Unlike feedforward layers, a LSTM
layer has recurrent connections with gating functions for
capturing sequential information, which is important in sleep
stage classification. All NN coefficients were quantized to 8
bits. Hardware friendly activation functions, hard−sigmoid
and softsign, were used as the gate and state activation
functions, respectively.

Four independent PWM based optical stimulators were
designed in this work. The stimulators were connected to 16
I/O pads via a multiplexer for driving a 16-channel off-chip
LED array. Fig. 5 illustrates the circuit design and stimulation
timing diagram. The PWM refreshes at a constant rate of
4kHz, and the pulse width can be programmed in a step
of 1/128kHz. On-chip registers and counters were designed
to control stimulation with a programmable period TPER
and a stimulation-ON time TSTM. The stimulator output
stage consists of an NMOS pass device and a programmable
resistor for limiting the peak current.

Fig. 5. Schematic and timing diagram of the PWM based optical stimulator.

III. RESULTS

The proposed mixed-signal circuit designs were simulated
in Cadence. Monte-Carlo simulation was used to determine
the variation. The input-output characteristics were modeled
in Matlab. The circuit models and the two-stage NN based
sleep stage classifier were trained by supervised learning in
Matlab. The performance of the classifier was evaluated on a
publicly available Sleep-EDF database (expanded) [12]. The
sleep stages were manually annotated by experts.

Table I summarizes the key specifications of the design.
The simulated input-referred noise of the EEG amplifier
was 4.3µV in a bandwidth of 0.5-100Hz. Fig. 6 (a) shows
the power spectral density (PSD) plots of the original and
whitened EEG signals from 15 subjects before adding gain.
The overall gain was designed to be programmable between
34-64dB (at 10Hz) in 16 steps, which was used for maxi-
mizing the SNR given the linear input range of the following
energy extraction circuits. The designed SAR ADC achieves
an ENOB of 8.81 in simulation.

Fig. 7 shows the performance improvement by NN retrain-
ing including mismatches modeled from circuits simulation.
The results show that all performance merits were improved
and variations were reduced after the retraining.

TABLE I
SUMMARY OF KEY SYSTEM SPECIFICATIONS

Technology 180nm
Supply Voltage 1.8V
Recording ch # 4
Stimulator ch # 16

Neural Feat. Ex. # 20
1st stage NN # 32/18/5
2nd stage NN # 30/5

Input referred Noise 4.3µV
Bandwidth 0.5-100Hz

ADC ENoB 8.81
SoC Power 97µW

Fig. 6. (a) Simulated PSD of 15 subjects before (grey) and after
(blue) frequency shaping. No additional gain was added for illustration.
(b) Simulated frequency responses of the biquad filter.

Fig. 7. Improvement of re-training including circuits mismatches modeled
from Monte-Carlo simulation.

Fig. 8 plots one night of the sleep stage classification
of expert annotation in comparison with traditional moving
average and the proposed two-stage NN. To quantify the
classification performance, standard metrics were used in
40 nights of recordings from 20 subjects. Fig. 9 (a) and
(b) shows the classification confusion table and performance
metrics. In summary, the averaged sensitivity of the five
sleep stages was 0.806, the averaged specificity was 0.947,
averaged precision was 0.819, and the averaged F1 score was
0.811.

Table II compares the performance with the current state-
of-the-art. The proposed SoC design achieved high perfor-
mance in real-time sleep scoring and closed-loop optogenetic
intervention at an ultra low power consumption.
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Fig. 8. Sleep stage classification of one night. (a) expert annotation, (b)
neural network with traditional moving average, and (c) the proposed 2
stage NN.

Fig. 9. (a) Confusion table of the classification results, and (b) summary
of the performance of 40 nights from 20 subjects.

TABLE II
COMPARISON WITH THE STATE-OF-THE-ART

Imtiaz
2017 [13]

Kassiri
2017 [14]

Liao
2018 [15]

Phan
2019 [16]

This
work

Classifi-
cation
Stages

5 stages
Awake/

REM/N1/
N2/N3

3 stages
Awake/
REM/
NREM

5 stages
Awake/

REM/N1
/N2/N3

5 stages
Awake/

REM/N1/
N2/N3

5 stages
Awake/

REM/N1/
N2/N3

Signal
type

EEG EEG/EMG EEG EEG
EEG/EOG/

EMG

Features FFT Filtering Filtering Learned
Energy

Features

Algorithm FSM Threshold
5-step

XGBoost
CNN

2-stage
NN

Dataset 20 cases 9 mice 1 case 20 cases 20 cases
Accuracy 98.7% 81.7% 86.3% 82.3% 80.6%
Sensitivity N/A 81.7% N/A 74.3% 80.6%
Specificity N/A 93.9% N/A 95.1% 94.7%
Precision N/A N/A 70.8%∗ N/A 81.9%
F1 score N/A N/A 66.4%∗ 74.7% 81.1%
Hardware ASIC FPGA FPGA N/A ASIC

Stimulation No Yes No No Yes
Power 575µW 3.6mW 102µW N/A 97µW

∗ Calculated based on the data provided in the paper.

IV. CONCLUSIONS

The key contributions of this work include: 1) the first
reported SoC design with a complete closed-loop pathway
from PSG recording, sleep stage classification, to optical
stimulation; 2) a novel two-stage NN architecture that en-
hances the classification performance while minimizing the
computational and memory cost; 3) an ultra-low-power neu-
ral feature extraction design with mismatch correction from
subject-specific off-line re-training; 4) an amplifier design
with a pre-whitening technique for equalizing feature mag-
nitude, maximizing dynamic range, and preventing amplifier
saturation from motion artifacts. Future work will fabricate
the SoC and test it in sleeping NHPs [17].

REFERENCES

[1] H. V. Ngo, T. Martinetz, J. Born, and M. Molle, "Auditory closed-loop
stimulation of the sleep slow oscillation enhances memory," Neuron,
vol. 78, no. 3, 2013.

[2] N. Ketz, A. P. Jones, N. B. Bryant, V. P. Clark, and P. K. Pilly,
"Closed-Loop Slow-Wave tACS Improves Sleep-Dependent Long-
Term Memory Generalization by Modulating Endogenous Oscillation-
s," J. Neurosci., vol. 38, no. 33, 2018.

[3] S. Henin et al., "Closed-Loop Acoustic Stimulation Enhances Sleep
Oscillations But Not Memory Performance," eNeuro, vol. 6, no. 6,
2019.

[4] A. Bueno-Lopez, T. Eggert, H. Dorn, and H. Danker-Hopfe, "Slow
oscillatory transcranial direct current stimulation (so-tDCS) during
slow wave sleep has no effects on declarative memory in healthy young
subjects," Brain Stimulation, vol. 12, no. 4, 2019.

[5] F. Weber, Y. Dan, “Circuit-based interrogation of sleep control,”
Nature, vol. 538, no. 7623, 2016.

[6] M. E. Carter et al., "Tuning arousal with optogenetic modulation of
locus coeruleus neurons," Nat. Neurosci., vol. 13, no. 12, 2010.

[7] P. R. Roelfsema and S. Treue, "Basic neuroscience research with non-
human primates: a small but indispensable component of biomedical
research," Neuron, vol. 82, no. 6, 2014.

[8] S. Tremblay et al., "An open resource for non-human primate opto-
genetics," Neuron, vol. 108, no. 6, 2020.

[9] K. J. Miller, et al., “Power-law scaling in the brain surface electric
potential," PLoS Comput. Biol., vol. 5, no. 12, Dec 2011.

[10] X. Liu, et al., “Design of a Closed-Loop, Bidirectional Brain Machine
Interface System With Energy Efficient Neural Feature Extraction and
PID Control,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 4, 2016.

[11] X. Liu, et al., “A Fully Integrated Wireless Compressed Sensing Neural
Signal Acquisition System for Chronic Recording and Brain Machine
Interface," IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 4, 2016.

[12] B. Kemp, et al., “Analysis of a sleep-dependent neuronal feed-
back loop: the slow-wave microcontinuity of the EEG,” IEEE Trans.
Biomed. Eng., vol. 49, no. 9, 2000.

[13] S. A. Imtiaz, Z. Jiang, and E. Rodriguez-Villegas. “An ultralow power
system on chip for automatic sleep staging," IEEE J. Solid-State
Circuits, vol. 52, no. 3, 2017.

[14] H. Kassiri, A. Chemparathy, M. T. Salam, R. Boyce, A. Adamantidis,
and R. Genov, “Electronic Sleep Stage Classifiers: A Survey and VLSI
Design Methodology," IEEE Trans. Biomed. Circuits Syst., vol. 11, no.
1, 2017.

[15] Y. Liao, M. Zhang, Z. Wang, and X. Xie, “Design and FPGA
Implementation of an High Efficient XGBoost Based Sleep Staging
Algorithm Using Single Channel EEG," Intl. Conf. on Cognitive Syst.
and Info. Process., vol. 2, pp. 554–563, 2018.

[16] H. Phan, F. Andreotti, N. Cooray, O. Y. Chen, and M. De Vos, “Joint
Classification and Prediction CNN Framework for Automatic Sleep
Stage Classification," IEEE Trans. Biomed. Eng., vol. 66, no. 5, pp.
1285–1296, 2019.

[17] A. G. Richardson, X. Liu, et al., "Hippocampal gamma-slow oscilla-
tion coupling in macaques during sedation and sleep," Hippocampus,
vol. 27, no. 11, 2017.

5681


