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Abstract— Diabetic Retinopathy (DR) is a progressive chronic
eye disease that leads to irreversible blindness. Detection of DR
at an early stage of the disease is crucial and requires proper
detection of minute DR pathologies. A novel Deeply-Supervised
Multiscale Attention U-Net (Mult-Attn-U-Net) is proposed for
segmentation of different DR pathologies viz. Microaneurysms
(MA), Hemorrhages (HE), Soft and Hard Exudates (SE and
EX). A publicly available dataset (IDRiD) is used to evaluate
the performance. Comparative study with four state-of-the-
art models establishes its superiority. The best segmentation
accuracy obtained by the model for MA, HE, SE are 0.65,
0.70, 0.72, respectively.

I. INTRODUCTION

Long term diabetes causes Diabetic Retinopathy (DR), a
progressive chronic eye disease, which leads to irreversible
blindness. Although detection of DR at an early stage of the
disease is crucial to prevent blindness, most of the patients
become symptomatic only in the advanced stages of DR;
such as non-proliferative DR (NPDR)' or proliferative DR
(PDR)?. According to the “International Clinical Diabetic
Retinopathy Disease Severity Scale” the severity of DR can
be graded into five stages: normal, mild, moderate, severe
and proliferative. Several pathologies related to DR are red
lesions viz. Microaneurysms (MA), Hemorrhages (HE), and
bright lesions viz. Soft and Hard Exudates (SE and EX),
venous beading, neo-vascularization, etc. Information related
to these pathologies are helpful in segregating DR images
from normal images, as well as for grading the DR. Typically
a DR detection system involves an opthalmologist manually
detecting vascular abnormalities and structural changes of
retina, from the color fundus images captured by fundus
cameras. Due to the manual nature of DR screening methods,
highly inconsistent results are often encountered from differ-
ent readers. Therefore automated diagnosis of DR becomes
necessary in the process of solving these problems.

State-of-the-art literature in this domain mostly deals with
classification of DR stages. While earlier solutions were
constrained to two class problems, involving DR and normal
[1], the recent approaches [based on deep Convolutional
Neural Networks (CNNs)] attempt to automatically grade
DR into its different stages [2], [3], [4]. The challenges
faced by researchers in implementing such deep network
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architectures include the need for considerable reduction in
input image size during training; which, again, results in
complete loss of most of the relevant minute pathological
information necessary for grading.

As far as our knowledge goes, literature on segmentation
of retinal lesions — particularly, the different DR pathologies
— is scarce. One of the reasons for this is the lack of
annotated datasets, mainly due to the difficulty in acquiring
pixel-level annotation. Tan er al. [5] segmented EX, HE
and MA automatically, using a single CNN, but obtained a
very low sensitivity. Recently a Diabetic Retinopathy Image
Dataset (IDRiD)? [6] has been released, in conjunction with a
challenge (Diabetic Retinopathy: Segmentation and Grading
Challenge) organized at the IEEE International Symposium
on Biomedical Imaging (ISBI 2018). A total of 22 teams
participated in the segmentation challenge, where the task
was to segment the four pathology classes MA, HE, SE and
EX. Most of the top performing methods used variants of the
popular U-Net [7], which has been extensively employed in
medical image segmentation in recent years. While for bigger
lesions like EX and SE a moderate segmentation accuracy
was achieved, the smaller lesions like MA and HE resulted
in considerably poor segmentation. Incidentally, the highest
scoring method achieved 0.5017 AUPR (Area Under the
Precision and Recall curve) for the MA segmentation task.

Pathologies such as MA and HE are usually scarce,
and their dimensions are negligible as compared to the
entire image. Standard segmentation architectures like U-
Net and Fully Convolutional Networks [8] do not yield
satisfactory results, mainly because of the progressive use
of max pooling operation in the encoding path to achieve
translational invariance over small spatial shifts in the input
image. While extracting dense semantic features, they tend
to lose the spatial information (boundary details) of these
tiny pathologies; which is not beneficial for tasks where
delineation of the boundary is vital. This necessitates the
design of a specialized architecture capable of passing rel-
evant spatial information of such pathologies (before each
max pooling step) to the corresponding stage of the de-
coding path, for correctly delineating them at the output.
In order to address the problem of segmenting such DR
pathologies, an attention mechanism [9] is introduced at
different levels. Here Attention Gates (AGs) are integrated
with the U-Net architecture, to generate attention maps,
before concatenating them to the decoder path. Besides,
for an improved representation of intermediate features, a
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multiscaled input image pyramid is incorporated for a better
precision-recall balance. A deep-supervision based layer-
wise training scheme, to force the intermediate layers to be
semantically discriminative at every scale, is also introduced.
Our main contributions are highlighted as follows.

o We incorporated multi resolution inputs in the U-Net
architecture. It provides a better representation of fine-
grain contextual information and eventually helped in
segmenting pathologies with variable sizes and shapes.

e We proposed a deep supervision based training to
provide direct supervision to the hidden layers and
propagate it to lower layers, instead of just doing it
at the output layer. This allows each layer to use a less
“diluted” gradient to learn.

o Gradients originating from background regions are
down-weighted during the backward pass of the deep
supervision training. This allows model parameters in
prior layers to be updated based on spatial regions that
are relevant to a given task.

The rest of the paper is organized as follows. Sec. II
provides details about the dataset and the proposed deep
multiscale attention-based architecture for the segmentation
of DR pathologies. Sec. III presents the experimental setup,
results, and discussion. The article is concluded in Sec. IV.

II. MATERIALS AND METHODS

This section presents the details of the dataset used,
followed by a description of the proposed deeply-supervised
Multiscale Attention U-Net (Mult-Attn-U-Net).

A. Dataset

Training and testing of the Mult-Attn-U-Net was per-
formed on the IDRiD database, encompassing 54 training
and 27 testing color Fundus images annotated with the
ground truth mask for each of the four pathologies MA, HE,
EX and SE. The images were of 4288 x 2848 resolution.
However, not all pathologies were present in all images.
In particular, 54 images had MA and EX, 53 contained
HE, and only 26 of them exhibited SE. While MA was
observed to be distributed over the entire retinal region in
small portions, the number of images containing SE was
comparatively fewer. This made the task of segmentation
even more difficult. Fig. 2 illustrates samples of the four
kinds of lesions, appearing in the database. The 54 training
images were randomly further split into 80% for training
and 20% for validation, while ensuring that the validation
set contained images representative of all pathologies (for
their proper evaluation). As each image was of very high
resolution, with the number of images being rather small
to train the network, we extracted overlapping patches (of
resolution 400 x 400) from each image with a stride of 200
to build the training and validation datasets. Non-overlapping
patches of 1600 x 1600 were used for testing.

B. Mult-Attn-U -Net for segmentation

Typically the standard U-Net architecture gradually down-
samples feature maps to capture a sufficiently large receptive

field of the input image, such that features at the coarser
spatial grid level serve to represent the location. Often this
leads to difficulty in reducing false-positive predictions for
smaller regions like MA and HE, which exhibit larger shape
variability. In order to alleviate this problem, we integrate
Attention Gates (AGs) into the U-Net framework at different
scales. The AG acts as a filter to the response from the
encoding stage of the U-Net, and is concatenated to the
decoding stage via skip connection. The gates are scalar
matrices, with values lying in the range [0, 1], and represent
probabilities of salient object(s) required for a task. The
saliency maps, when multiplied by the input response before
concatenation with the decoding path, help in attenuating
feature responses irrelevant to the task. As the maps get
generated during testing, these can be learned end-to-end via
deep learning framework.

Fig. 1 depicts the schematic of the proposed Multiscale
Attention U-Net (Mult-Attn-U-Net), with Attention Gates
at multiple levels incorporated into the U-Net architecture.
Multi resolution inputs are incorporated in the U-Net archi-
tecture for capturing better fine-grain contextual information,
which eventually helped in segmenting pathologies with
variable size and shapes. The novel “deeply-supervised”
learning enforces the intermediate layers to be semantically
discriminative at every scale. Multiple losses are computed,
based on the outputs from each of the decoding blocks, by
comparing them with the corresponding segmentation maps
of the same resolution. Since max-pooling is applied after
each encoding stage, the input image gets downsampled
and concatenated with the feature maps. This improves the
segmentation accuracy, as small features do not get lost in
cascading max-pooling. It was found that deep supervision
is advantageous in enhancing the segmentation accuracy of
smaller pathologies like the MA and HE.

The Attention Gates, which help preserve feature re-
sponses relevant only to the task, are highlighted in Fig. 1.
An input features x (represented by the dotted input to AG)
is scaled with attention coefficient « in the Attention gates
(AG). Relevant spatial regions are passed after analysing
the activation of the gating signal g (denoted by the blue
input to AG), which contains rich spatial and contextual
information provided by the input signal z. The decoder
path is divided into three levels, viz. “lower” (1), “middle”
(m), and “upper” (u) layers, in order to incorporate deep
supervision. Along with the predicted segmentation maps
generated from the final upper layer, there arrive two smaller
resolution prediction maps from the middle and lower layers,
respectively. Independent loss functions are computed at each
layer, viz. L;, L., and L,, by comparing the predictions
with the corresponding resized ground truths. This results
in a more efficient gradient back propagation, along with
accurate detection of smaller irregular pathologies. Let W
be the weight of the main network, and w!, w™ and w* be
the weights of the three classifiers used in the lower, middle
and upper level outputs respectively. The final loss used for
the deep supervision is represented as a weighted sum of

2615



Sigmoid Resampler

multi-scale inputs

deep supervision

—»3x3 Conv + BN + ReLU

—» 1x1 conv + Softmax

—»2x2 Max-pooling = 2x2 Learnable UpConv = -» Skip connection

@ Attention Gate

i1 Concatenation

Fig. 1.

individual losses, and expressed as
LOGW,whw™ w) = D acLe(; Ww®)+A (W)

ce{l,m,u}

+ Y ). (M)

ce{l,m,u}

Here oy, oy, vy, are the weights for the associated loss, x
represents the training samples, () is the Ly regularization
term, and hyperparameter A acts as a trade-off coefficient.

Evaluation of segmentation is made in terms of the multi-
class extension of Generalized Dice loss (GDL) [10], where
the weight of each class (w) is inversely proportional to
the square of label frequencies, that efficiently handles the
associated class imbalance problem. The GDL is defined as

s N
Zs:l Ws Zi:1 Ys,iPs,i
)
Zf:l Ws ZZ\; Ys,i T Dsii T €

where w, = —x———, with p and y denoting the predicted

i= yst)
probability map and ground truth values, respectively. Here
€ ensures the loss function stability, S represents the classes
viz. {Background, MA, HE, EX,SE}, and N denotes the

total number of pixels in the image.

Le= 2

III. EXPERIMENTAL SETUP AND RESULTS

The proposed deeply-supervised Mult-Attn-U-Net was de-
veloped using TensorFlow, with a wrapper library Keras in
Python. The experiments were performed on a Dell Precision
7810 Tower with 2x Intel Xeon E5-2600 v3, totalling 12
cores, 128GB RAM, and NVIDIA Quadro K6000 GPU with
12GB VRAM. Adam optimization algorithm was employed

Multiscale Attention U-Net (Mult-Attn-U-Net) with deep supervision.

for hyperparameter optimization for training, with an ini-
tial learning rate 1073, and decayed according to cosine
annealing. Real time data augmentation was used in terms
of random rotation, scaling, and mirroring. Area Under the
Curve of Precision-Recall (AUCPR) [6] is used to evaluate
the performance of the model. We have compared our results
with the top scoring methods from IDRiD challenge on the
test data set as reported on the leaderboard* as summarized
in Table III.

As observed from the Table III, the proposed method
achieved the best scores for segmentation of MA, HE and
SE. A huge gain (around 15%) is achieved in case of MA
segmentation compared with the second best performing
model (IFLYTEK). Detection of DR in the preliminary stage
actually depends on correct detection of MA, which is the
earliest visible sign of retinal damage. In case of HE and SE
significantly improved segmentation results were observed.
It should be noted that we are using smaller size patches
(400 x 400) as compared with the VRT (1200 x 1200) (the
second best performing method). Fig. 2 displays qualitative
segmentation results for two sample images from the dataset.

We also performed three ablation studies to report the
effect of training patch size — two patch sizes viz. 256 x
256 and 512 x 512 were considered, training without deep
supervision and with increased depth reported in Table II. As
observed from Table II the proposed model with increased
depth attained the best score for the EX but performed
poorly for MA and HE. For bigger patch sizes we did not
observe any significant improvements in the results and deep
supervision actually enhances the model performance.

“https://idrid.grand-challenge.org/Leaderboard/
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TABLE I
COMPARISONS OF THE PROPOSED METHOD AND THE TOP 4 TEAMS FOR SEGMENTATION OF DIFFERENT LESION (MA, HE, SE AND EX) ON THE

TESTING DATASET.

Method A HELCSIOH SE X Approach Training patch size
VRT 0.4951 | 0.6804 | 0.6995 | 0.7127 U-Net 1200 x 1200
iFLYTEK | 0.5017 | 0.5588 | 0.6588 | 0.8741 Cascaded CNN with Ensemble 320 x 320
PATech 0.4740 | 0.6490 - 0.8850 DenseNet+U-Net 256 x 256
SDNU 0.4111 | 0.4572 | 0.5374 | 0.5018 Mask R-CNN 3584 x 2380
Proposed | 0.6500 | 0.6984 | 0.7201 | 0.8545 | Attention U-Net with deep supervision 400 x 400
Image Ground truth Prediction
S

B MA BHE

Fig. 2.

TABLE I
ABLATION STUDIES TO STUDY THE EFFECT OF PATCH SIZE, DEEP
SUPERVISED TRAINING AND MODEL DEPTH.

Pathologies

Networks MA HE SE EX
Trained on patches

of size 256 x 256 0.46 1 0.65 | 0.38 | 0.82
Trained on patches

of size 512 x 512 0.51 | 0.67 | 045 | 0.68

_ Mult-Autn-U-Net 044 | 062 | 059 | 0.76

without deep supervision

Mult-Attn-U-Net

with increasd depth 043 1 0.52 1 071 | 0.89

IV. CONCLUSION

This paper presented a novel CNN model called deeply-
supervised multiscale attention U-Net (Mult-Attn-U-Net) for
segmentation of four DR pathologies viz. MA, HE, SE, and
EX from fundus images. Novel concepts such as deeply
supervised training and multiscaller attention based networks
were used for this purpose. An aggregated loss function was
also proposed for the deeply supervised training which pro-
vides direct supervision to the hidden layers. We compared
the proposed model with the four state-of-the-art models
based on a publicly available dataset (IDRiD). The proposed
model achieved the best segmentation accuracy for small
pathologies such as MA, HE, and SE. A huge gain (around
15%) is achieved in case of MA segmentation compared with
the second best performing model (IFLYTEK).

SE MEX

Qualitative segmentation results of two sample images.
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