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Abstract— The global pandemic of the novel coronavirus
disease 2019 (COVID-19) has put tremendous pressure on
the medical system. Imaging plays a complementary role
in the management of patients with COVID-19. Computed
tomography (CT) and chest X-ray (CXR) are the two dominant
screening tools. However, difficulty in eliminating the risk of
disease transmission, radiation exposure and not being cost-
effective are some of the challenges for CT and CXR imaging.
This fact induces the implementation of lung ultrasound (LUS)
for evaluating COVID-19 due to its practical advantages of
noninvasiveness, repeatability, and sensitive bedside property.
In this paper, we utilize a deep learning model to perform the
classification of COVID-19 from LUS data, which could produce
objective diagnostic information for clinicians. Specifically, all
LUS images are processed to obtain their corresponding local
phase filtered images and radial symmetry transformed images
before fed into the multi-scale residual convolutional neural
network (CNN). Secondly, image combination as the input of
the network is used to explore rich and reliable features. Feature
fusion strategy at different levels is adopted to investigate
the relationship between the depth of feature aggregation and
the classification accuracy. Our proposed method is evaluated
on the point-of-care US (POCUS) dataset together with the
Italian COVID-19 Lung US database (ICLUS-DB) and shows
promising performance for COVID-19 prediction.

I. INTRODUCTION

The COVID-19 pandemic has increased the burden of
excess morbidity and mortality worldwide. The high trans-
missibility and long incubation time of the SARS CoV-2
virus increase the difficulty in containing viral spread. A
rapid diagnosis and severity classification in the early stage
of the disease can significantly reduce the risk of further
infections and help mitigate the excess morbidity and mor-
tality of critically ill patients. At present, the main detection
methods for COVID-19 infection are the genetic test (reverse
transcription-polymerase chain reaction (RT-PCR)) [1] and
serology test. Radiological assessment, based on CT and
CXR, has been incorporated to improve the management of
COVID-19 disease. However, difficulty in eliminating the
risk of disease transmission, radiation exposure, not being
cost-effective are some of the challenges for CT and CXR
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imaging [2]. CT scan can also be not performed bedside
limiting its use in the intensive care unit (ICU) settings.

Lung ultrasound (LUS) is non-invasive, rapid, repeatable,
and provides bedside imaging providing a safer alternative
to CXR and CT. As such, LUS use for rapid assessment
of the severity of COVID-19 pneumonia has been reported
[1]–[3]. However, early lesions or less obvious tissue changes
are difficult to distinguish by the human eyes. Furthermore,
differences in medical pathology around various regions
and the varied LUS experience of clinicians can result
in misdiagnosis. Thus, developing standardized systems to
report and interpret disease findings is a challenge with LUS
[2].

Artificial intelligence (AI)-based solutions in medical
imaging have demonstrated the potential to establish ob-
jective and unified interpretation standards. In [1] a new
convolutional neural network (CNN) architecture, termed
POCOVID-Net, was proposed. A VGG-16 architecture was
used as the backbone and was fine-tuned during network
training [1]. The reported average 3-class classification ac-
curacy was 89% [1]. In [4], a multi-task CNN architecture
was proposed. The network achieved an F1score of 61%, a
precision of 70%, and a recall of 60% for risk prediction.
Although promising early results, CNN-based methods for
processing B-mode US data are affected by the image
acquisition settings and quality of the collected data [5].
Finally, the limited availability of COVID-19 LUS data is
also another bottleneck.

To address the above problems, we propose using a multi-
feature multi-scale CNN-based approach to achieve a more
accurate COVID-19 classification. Given that incorporating
local-phase image tissue features can improve the accuracy
of CNNs [5] for processing B-mode US data, local phase US
image-based COVID-19 signatures are extracted for diverse
and robust representations. Then we adopted the feature-
fusion strategy to realize the effect of feature complement.
To enlarge the network perception dimensions for more
discriminative features of the input images, extra convolu-
tional layers with different-size kernels are used in our CNN
architecture. Our proposed approach is evaluated on 1752
scans obtained from 76 subjects.

II. METHODS

Our method mainly consists of two parts, local phase
features extraction and binary classification based on multi-
feature multi-scale CNNs. In this work, the use of local phase
information aims to enhance the appearance of lung tissues
and recover the pertinent tissue structure from LUS data. The
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extraction of local phase image features also increases the
dimensionality for training. The model applied for the clas-
sification task is based on the multi-scale two-dimensional
(2D) residual neural network (ResNet) architecture similar to
the one reported in [6]. Three different fusion architectures
are investigated during this work.

A. Local Phase Image Features

Image phase information is a key component in the inter-
pretation of a scene and has been used in various applications
for processing US data [5], [7]. In this part, we first obtain
the local phase energy feature image, denoted as LPE(x,y),
which is extracted using:

LPE(x,y) = ∑
sc
|USM1|−

√
US2

M2 +US2
M3 (1)

In the above formula, sc represents the number of filter scales
set to 2 throughout the experimental evaluation, and USM is
the group of monogenic signal images computed using the
vector-valued odd filter (Riesz filter) [7] on band-pass filtered
LUS image, denoted as USB(x,y), as follows:

USM(x,y) = [USM1(x,y),USM2(x,y),USM3(x,y)]

= [USB(x,y),USB(x,y)⊗h1(x,y),

USB(x,y)⊗h2(x,y)]
(2)

where ⊗ represents the convolution operation and h1(x,y),
h2(x,y) are components in Riesz filter. For bandpass filtering
α-scale space derivative quadrature filters (ASSD) [7] are
used to output USB(x,y).

Then US signal transmission map is modelled with scat-
tering and attenuation information to get enhanced im-
age USE(x,y), with maximized visibility of high intensity
LPE(x,y) features inside a local region. A linear interpola-
tion model is selected to combine the two interactions:

LPE(x,y) =USA(x,y)USE(x,y)+(1−USA(x,y))β (3)

Here, LPE(x,y) is the local phase energy image, USA(x,y)
is the signal transmission map and USE(x,y) is the enhanced
image. β is a constant value representative of the tissue
echogenicity in the local region. Our aim is USE(x,y) and
we hope to get two different enhancement results with
different β value settings (60% and 90% of the maximum
intensity value of LPE(x,y)). Once the signal transmission
map USA(x,y) is obtained using the well-established Beer
Lambert Law, USE(x,y) can be calculated according to
Equation (4):

USE(x,y) =
LPE(x,y)−β

[max(USA(x,y),ε)]δ
+β (4)

δ is related to tissue attenuation coefficient, η , and ε is a
small constant to avoid division by zero. Throughout the
experimental evaluation η = 0.85, ε = 0.0001. ASSD filter
parameters were kept same as reported in [7].

In Fig. 1, the two enhanced local phase images USE(x,y)
denoted as USE1(x,y) and USE2(x,y) are shown. These two
enhanced images are used as the input for radial symmetry
tissue extraction. Fast radial symmetry transform algorithm is

Fig. 1. Qualitative results of local phase and radial symmetry-based image
enhancement and feature extraction methods. Top row: A regular lung.
Middle row: A bacterial pneumonia infected lung. Bottom row:A COVID-19
infected lung. All rows from left to right: LUS image US(x,y), local phase
enhanced images USE1(x,y) and USE2(x,y), radial symmetry transformed
images S1(x,y) and S2(x,y).

applied on the local phase images, aiming to detect points of
interest [7]. Fig. 1 shows radial symmetry images S1(x,y) and
S2(x,y) corresponding to the local phase enhanced images,
USE1(x,y) and USE2(x,y), it can be seen that the transfor-
mation highlights the points of interest that are characterized
by radial symmetry as well as high contrast.

B. Network Architecture

The multi-scale 2D ResNet is a light-weighted classifica-
tion network even though it simultaneously captures features
from multiple receptive fields. This network is composed of
three functional parts: 1) one convolutional layer for primary
feature map extraction, 2) multiple residual blocks with the
multi-scale convolutional layer, 3) a fully connected layer
with a softmax activation function to act as a classifier. All
input images were resized to 512×512. We investigate three
different fusion architectures with the US(x,y), USE1(x,y),
USE2(x,y), S1(x,y), and S2(x,y) images as an input (Fig.2)

Figure 2 illustrates various network architectures. During
this work, we adopt multi-scale receptive fields to focus on
different scale information. Three ResCNN blocks are basic
components in all designs to extract multi-scale features.
They have different receptive kernels, the sizes set to 3×3,
5× 5 and 7× 7. In every ResCNN block, there are three
sub-blocks and each sub-block contains two convolutional
layers. The skip connection is added in each sub-block to
avoid the degradation problem [5]. An average pooling layer
follows after the convolution operation to output the final
feature map. At the end of the network, a fully connected
layer with an activation function is used to act as a classifier,
with the input of the concatenation of the final feature maps.

Feature-fusion function is utilized in different levels of
the CNN model to construct early-, mid-, and late-fusion
structures [4]. To achieve early fusion, all the images are
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Fig. 2. The various CNN architectures. Each convolutional layer has three parameters: kernel size, depth and stride. (a) The architecture of the early-fusion
CNN. US(x,y), USE1(x,y), USE2(x,y), S1(x,y) and S2(x,y) images are fused at the pixel level to input the network. (b) The architecture of the mid-fusion
CNN. Five input images are separately processed by the initial convolutional block to output the corresponding primary feature maps. A concatenation
of these primary feature maps is processed through the network. (c) The architecture of the late-fusion CNN. Five input images are separately processed
through the whole network till the average pooling layer. All final feature maps are fused to input the fully-connected layer.

concatenated at the pixel level to form input with more
channels. In the mid-fusion model, multiple input images
are input to the network separately, processed by the initial
convolutional layer to obtain corresponding primary feature
maps. Concatenation is performed to finish feature aggrega-
tion for the deeper extraction. Late fusion is operated before
the fully connected layer processing to fuse final feature
maps from each input image.

C. Data

The dataset used in this work was obtained from [1]
and [3] and consisted of 1276 COVID-19 LUS scans from
51 subjects, 254 bacterial pneumonia LUS scans from 13
subjects, and 222 LUS scans from 12 healthy subjects.
Bacterial pneumonia and healthy LUS scans are joined as
a non-COVID-19 class. Therefore, our focus for this work,
was on binary classification.

D. Experiment Implementation

We performed 5-fold cross-validation to evaluate the per-
formance of our proposed method. During the evaluation,
the same patient data was not included in the training and
testing data. The reported final results show the mean of the
5-fold cross-validation. All datasets maintain the same data
distribution, including the US(x,y) dataset and USE1(x,y),
USE2(x,y), S1(x,y), S2(x,y) datasets.

All CNN models are trained by using the cross-entropy
loss function and ADAM optimizer with a learning rate of
1e−5. Classification performance is measured by four met-
rics: accuracy, precision, recall, and F1score. To evaluate the
effectiveness of image processing methods and feature-fusion
strategies, we compare the results of just using US(x,y)
image as the input and the combination between two groups
of processed images (USE1(x,y) and USE2(x,y), S1(x,y) and
S2(x,y)). Furthermore, we investigate the accuracy of the
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TABLE I
CLASSIFICATION PERFORMANCE SUMMARY. BEST RESULT IS SHOWN IN BOLD

Method Accuracy Precision
Covid-19/Non Recall

Covid-19/Non
F1 Score
Covid-19/Non

US(x,y)(single feature CNN) 89.94% 92.48%/82.49% 93.98%/78.70% 93.21%/80.46%

USE1(x,y)+USE2(x,y)
Early Fusion
Mid-Fusion
Late-Fusion

91.93%
90.91%
88.96%

95.18%/84.65%
94.94%/81.69%
92.12%/81.29%

93.76%/87.40%
92.73%/86.80%
92.99%/78.72%

94.39%/85.52%
93.72%/83.56%
92.44%/79.39%

S1(x,y)+S2(x,y)
Early Fusion
Mid-Fusion
Late-Fusion

90.68%
86.53%
87.52%

93.09%/84.35%
87.35%/84.92%
89.70%/83.38%

94.33%/80.85%
95.85%/61.54%
93.62%/70.46%

93.65%/82.17%
91.27%/69.50%
91.48%/75.56%

US(x,y)+USE1(x,y)+USE2(x,y)
Early Fusion
Mid-Fusion
Late-Fusion

88.60%
92.80%
95.11%

93.01%/78.21%
93.28%/91.74%
94.93%/95.87%

91.42%/81.70%
97.18%/81.54%
98.59%/86.05%

92.09%/79.27%
95.14%/86.03%
96.70%/90.48%

US(x,y)+US {E1}(x,y)+US {E2}(x,y)+S {1}(x,y)+S {2}(x,y)
Early Fusion
Mid-Fusion
Late-Fusion

90.57%
88.79%
89.33%

93.51%/84.21%
92.37%/79.50%
92.26%/82.15%

93.89%/82.74%
92.55%/79.20%
93.25%/79.05%

93.54%/82.50%
92.37%/78.80%
92.69%/80.16%

model by using 5 kinds of images as input.
Experiments are implemented in the PyTorch framework

with an Intel Core GPU at 3.70 GHz and a NVIDIA GeForce
GTX 1080Ti GPU.

III. RESULTS

Quantitative results of our proposed method are presented
in Table 1. Our proposed multi-scale network achieves an
average classification accuracy of 89.94% when using only
LUS data (US(x,y)). The average accuracy increases to
91.93% when using enhanced images USE(x,y), and 90.68%
when using radial symmetry images S(x,y) (Table 1). The
best performance was obtained when combining the LUS
US(x,y) images with the enhanced images USE(x,y), where
an average accuracy of 95.11% was obtained. The compar-
ison among results of the first three sets of experiments
demonstrates that the local phase feature is beneficial to
enhance tissue characteristics for network learning, espe-
cially, feature fusion performed in the early stage. As seen
in Table 1 the results present that late-fusion design obtains
the highest accuracy (95.11%), F1score (96.70%) significantly
outperforming the other fusion operations in these two
metrics. When all the image features were combined early
fusion architecture obtained the best results compared to
other fusion networks investigated. We further observe that
by using local phase image features the performance of the
network for classifying non-COVID-19 data is also improved
(F1score of 90.48% vs 80.46%).

IV. CONCLUSION

In this work, we have explored the use of local phase lung
US image features for improved classification of COVID-
19 using a multi-scale CNN architecture. Quantitative and
qualitative results confirmed that the use of local phase
information and multi-feature multi-scale CNN contributes to
improved COVID-19 classification performance in LUS data.
Fusing LUS features and local phase features at a late stage
gives the highest accuracy reaching 95.11%, at the same
time, other metrics prove a balanced classification capability
of the model. In most cases, the early-fusion strategy shows
a better classification performance. One of the drawbacks of
our work is the limited amount of dataset. Compared to the

publicly available CT and CXR image datasets for COVID-
19, the number of available LUS is scarce. However, we are
in the process of collecting new data which we believe will
strengthen the evaluation of our proposed CNN model.

Our future work will include the evaluation of the pro-
posed method on a larger scale dataset. We also would
like to extend our network for multi-class classification
for differentiating regular pneumonia from COVID-19 and
evaluation against other CNN-based classification methods
[1], [4]. Finally, optimization of the local phase image filter
parameters based on CNN performance will be investigated
as well.
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