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Abstract— With the use of computer-aided diagnostic
systems, the automatic detection and segmentation of the cell
nuclei have become essential in pathology due to cellular nuclei
counting and nuclear pleomorphism analysis are critical for
the classification and grading of breast cancer histopathology.
This work describes a methodology for automatic detection and
segmentation of cellular nuclei in breast cancer histopathology
images obtained from the BreakHis database, the Standford
tissue microarray database, and the Breast Cancer Cell
Segmentation database. The proposed scheme is based on the
characterization of Hematoxylin and Eosin (H&E) staining,
size, and shape features. In addition, we use the information
obtained from morphological transformations and adaptive
intensity adjustments to detect and separate each cell nucleus
detected in the image. The segmentation was carried out by
testing the proposed methodology in a histological breast
cancer database that provides the associated groundtruth
segmentation. Subsequently, the Sørensen-Dice similarity
coefficient was calculated to analyze the suitability of the
results.

Clinical relevance— In this work, the detection and seg-
mentation of cell nuclei in breast cancer histological images
are carried out automatically. The method can identify cell
nuclei regardless of variations in the level of staining and
image magnification. Moreover, a granulometric analysis of the
components allows identifying cell clumps and segment them
into individual cell nuclei. Improved identification of cell nuclei
under different image conditions was demonstrated to reach
a sensitivity average of 0.76 ± 0.12. The results provide a
base for further and complex processes such as cell counting,
feature analysis, and nuclear pleomorphism, which are relevant
tasks in the evaluation and diagnostic performed by the expert
pathologist.

I. INTRODUCTION

According to recent World Health Organization (WHO)
data, breast cancer is the most common type of cancer in
women [1], representing 15 % of all cancer cases. A correct
breast cancer diagnosis is made by removing a small portion
of the breast tissue through a standard procedure called
a biopsy [2]. Once the tissue is obtained, it undergoes a
process of conservation and staining to finally be observed
under the microscope by the pathologist, who performs a
visual evaluation of the tissue structures to classify and grade
cellular differentiation [3] [4]. This evaluation is substantial
to know the type of cancer and the degree of malignancy
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of breast carcinoma [5]. The pathologist performs a fun-
damental task for visual tissue analysis by evaluating the
size and shape of the cellular nucleus. The recognition and
evaluation of the tissue are done subjectively [6]. Hence,
it is prone to possible diagnosis errors and discrepancies
between experts. The diagnostic errors put the patient at
risk of being subjected to incorrect or unnecessary treatments
and interventions, a problem that has been recognized [7].
An oversaturation in health services generates an excessive
workload for the medical expert, increasing the probability
of human error [8]. The image analysis techniques and com-
puter vision have been widely recognized in medical research
since they provide an advantage in quantitative analysis and
aid the final diagnosis of the experts [3]. Automatic detection
of the cell nuclei is a critical tool to perform an automated
analysis of breast tissue histological sections. So, cell nuclei
analysis is a relevant task in the classification and grading
of breast cancer.

Several approaches have been proposed for automatic
nuclei detection and segmentation on H&E staining im-
ages by using computational techniques such as gradient-
based methods [9], morphological operations [10], active
contours [11], [12],among others. Other approaches use
marker-controlled watershed to segment the nuclei [13], [14]
varying the way to produce markers such as fast radial
symmetry [15], [16] or template matching [17]. However,
the techniques used by the methods have fixed parameters.
Some of them require a prior manual or partial identification
of the nuclei, which is a limitation when a new dataset is
analyzed. Moreover, some methods identify the nuclei, but
they do not consider separating clusters or clumps of particles
which is a significant restriction.

In this work, we propose an automatic methodology to
detect and segment cell nuclei in breast cancer histopathol-
ogy images. Our goal is to provide a method capable of
identifying the cellular structures of interest and segmenting
them independently of parameters such as the magnification
of the sample or the staining level. Moreover, the proposed
method deals with identifying and dividing cell clusters, a
common issue in histopathological samples.

II. BASIC CONCEPTS

A. Histopathology

Histopathology is the study of the signs of disease in tissue
when analyzed under a microscope [24]. The biopsy obtained
from the patient is processed and fixed on glass slides. It is
necessary to distinguish the tissue components with different
colorants intended to highlight the cellular structure. A handy
H&E staining technique whose main characteristic is that
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hematoxylin remarks cell nuclei in dark purple and blue tones
while eosin stains the cytoplasm and connective tissue in pink
tones (Fig. 1) [3]. Large amounts of data have been analyzed
under this technique, and given its usefulness, it is expected
to continue to be a gold standard in tissue analysis [25].

Fig. 1. H&E stained histology image of lobular carcinoma [35].

B. Mathematical morphology

The mathematical morphology is widely used in image
analysis since it is useful to represent and describe the
structures in the image. By using morphological operations,
we can simplify images while preserving their main features.
A morphological transformation involves the interaction
between the structures (objects) in the image A and an
analysis window called structuring element B that indicates
the morphology (shape) used for processing A [26]. The
shape of the structuring element may be circular, diamond,
line, although a square shape is typically used [27]. Two
basic morphological operations are called morphological
opening (1) and morphological closing (2) where λ is a
parameter associated to the scale of B . On (1) and (2), the
transformations of erosion ελB and dilation δλB are defined
as ελB(f)(x) = min {f(y); y ∈ λB} and δλB(f)(x) =
max {f(y); y ∈ λB} where max and min take the max-
imum and minimum values, respectively . Dilation grows
or enlarges an object by increasing its area, for example,
to connect two or more objects, becoming them into one.
Erosion reduces the object area, which is useful when two
or more objects must be separated. For instance, some objects
are connected when dilation is applied, but others only are
enlarged. In some applications, it is important not to change
the size of the objects significantly. Then, to avoid such
an effect, the complementary transformation, i.e., erosion,
is applied after dilation or vice versa. The restoration of
the objects size is associated with the second operation in
a morphological opening or closing.

γλB(f) = δλB [ελB(f)] (1)

ϕλB(f) = ελB [δλB(f)] (2)

C. Granulometry

Granulometry is a measure based on morphological op-
erations and is used to know the grain sizes in the image.
Grain is generally seen as a piece of solid or liquid matter,
and size is understood as the characteristic dimension of
the grain [28]. In the case of spherical particles, the
radius will be taken as the dimension related to its size.

In digital image processing, the meaning of grain changes
to refer to a structure or object associated with a particular
(solid) gray level. For instance, on a microscope image,
a cell is represented by a certain gray level or staining.
The granulometric analysis allows us to estimate the size of
the objects in the image, which is important in subsequent
processes such as segmentation, analysis of the distribution,
or focusing a certain process towards a particular object size.
Granulometry is defined as a set of operations {γλ} with λ of
some ordered set A. The granulometric analysis of an image
f can be seen as a mapping of the morphological apertures
in {γλ} and a measurement mes of the area or volume of the
image at opening γλ(f). The difference between an opening
of λ size (mes(γλ(f)) and an opening of incremental size
λ + ∆ (mes(γλ+∆(f)) indicates the impact of the changes
in the image, associating the impact to the λ+ ∆ size. The
obtained difference is called pattern spectrum (PS(f)) (3).
To recognize the amount of structures of representative size
λ that are present in the image, PS(f) is normalized by
(mes(f)).

PS(f) =
mes(γλ(f))−mes(γλ+∆(f))

mes(f)
(3)

D. Watershed

Watershed is a segmentation technique that identifies re-
gions based on mathematical morphology; it allows estab-
lishing the boundaries among the regions on the image. Wa-
tershed classifies pixels according to their spatial proximity,
the gradient of their gray levels, and the homogeneity of
their texture [29]. Watershed considers that a grayscale image
I can be seen as a topological surface where every local
minimum (darker regions) is the bottom of a valley or a
catchment basin (Fig. 2a). Then, starting with the minimum
intensity value, each catchment basin is marked or flooded.
This flood will progressively fill different catchment basins of
the image (Fig. 2b-c). When the flood reaches the maximum
level in a basin (higher gray level), a watershed must be
marked to avoid flooding another vessel (Fig. 2d-e). In this
way, the borders are found, and the objects are segmented
(Fig. 2f) [31]. The watershed transformation is denoted by
(4), where the watershed of f is the set of points that do not
belong to any regional minimum catchment basin CB(mi).
A regional minimum catchment basin is defined as the set of
points in a connected domain D that is topologically closer
to the regional minimal (mi) than any other mj [32].

Wshed(f) = D ∩

(⋃
i∈I

CB(mi)

)c
(4)

III. METHODOLOGY

The proposed method consists of three principal parts: (A)
a local intensity adjustment to highlight regions of interest
followed by a granulometric analysis to know the particles
size in the histological image. (B) A selective process to
identify particles of interest and discard those that do not
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Fig. 2. Flooding process for object segmentation by the watershed
transform [31]. a) Gray level intensity image b-c) flooding starts from the
lowest minimum local, and every catchment basin is marked, d-e) flood
reaches the maximum level of the catchment basin and stops flooding f) after
every catchment basin is flooded, the remaining borders denote different
regions, and segmentation is done.

provide relevant information; (C) a refinement of segmenta-
tion focused on dividing the larger objects associated with
clumps or overlapped nuclei. Figure 3 shows the framework
of the proposed methodology. Every stage is described in
detail below.

Fig. 3. Proposed automatic cell nuclei segmentation.

A. Separation by color

H&E staining system is characterized by highlighting the
tissue components in purple tones, darker in the nucleus area,

and pink in the cytoplasm and related tissue surrounding
the nucleus. Therefore, the separation of the red channel of
the color image helps to highlight the purple hue to easily
extract the components of interest. Figure 4 shows an original
histopathological RGB image (left) and its corresponding red
channel (right). It is observed that in the red channel, there
is a high contrast between the components of interest (cell
nuclei in dark grays) and the rest of the elements (tissue
and background in light grays). However, it is difficult to
distinguish the limits among the components of interest in
some areas, an issue that often affects the segmentation
results.

Fig. 4. Red channel separation from a color image. a) RGB Image, and
b) channel R extraction.

B. Local contrast adjustment
Once the red channel has separated, it seeks to improve the

contrast in the regions that correspond to the cell nucleus.
Then, a contrast adjustment is applied by using a gamma
correction function whose simplest form is defined by the
power function Vout = AV gin; where Vin is a real positive
value, A is a constant and g is the gamma encoding that
symbolizes a numeric parameter [33]. The gamma correction
highlights objects of interest by doing a linear mapping
low to bottom and high to top of the values of its pixels.
The gamma correction function GC(I, r) performs a linear
mapping (Gamma = 1) of the values in the image I to the
range r = [lowin, highin] where lowin = m − (std ∗ 2)
and highin = m, m is the average of the intensity values
of the image and std is the standard deviation. However, it
must be taken into account that cells nuclei are surrounded by
neighborhoods of pixels with different gray levels. Therefore,
if a general adjustment is applied taking statistics from the
whole image, cells nuclei on low contrast areas may become
more similar to the background, making their subsequent
segmentation difficult. A more accurate approach consists
of dividing the image into subregions for a local contrast
adjustment. In this way, it is possible to deal with the
gray level differences within a smaller area and enhance
the contrast among its components, i.e., cell nucleus and
background. The subregion size is an important parameter
because it is expected that several components of interest are
contained on it, and this depends on the image magnification.
Then, this is a dynamic parameter. A granulometric analysis
is performed to estimate the size distribution of the particles
in the image and ensure that the subregion size is larger than
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any cell nucleus on the image. A circular structural element
was used in this analysis since it was according to the cell
nucleus morphology. Figures 5a-b shows the granulometric
analysis of the original image where the most relevant size
corresponds to a structural element of radius r = 4, meaning
that most of the cell nuclei could be contained on an area
of 7× 7. After several tests, an optimal contrast adjustment
was obtained by processing subregions covering an area of
25 times the cell nucleus size r. Thus, the subdivision of the
image is independent of the magnification.

Once the image has been divided into subregions (Fig. 5c),
the contrast adjustment is performed locally, increasing the
gray level distance between the components according to
their particular conditions. For example, in Fig. 5 the cell
nuclei at the center of the histological section were low
contrasted with respect to those at the edge. After local con-
trast adjustment (Fig. 5d), the cell nuclei in both areas were
highlighted from their respective background, showing the
advantage of using the local information for improvement.
This result facilitates the binary segmentation of the image
that extracts the components most likely related to a cell
nuclei, eliminating the background and other tissue parts that
are not of interest. (Fig. 5e).

Fig. 5. Scheme of the process for local contrast adjustment. a) Initial R
channel image, b) granulometry, c)sub-section separation using granulom-
etry measure as reference, d)local adjustment result, e) image binarization.

C. Adaptive segmentation

where mc is the mean circularity of all particles and
sc is the standard deviation. The cell nuclei that do not

Fig. 6. Selection and Watershed segmentation, a) binary Image, b) small
particles, noise and possible artefacts, c) average size particles are saved,
d) big particles and clumps for separation with Watershed, e) segmented
clumps, f) resulting particles of previous processes are fused, g) resulting
segmentation.

fulfill the threshold are eliminated. The components of size
larger than r could be associated with clusters of nuclei
overlapped or very close to each other (Fig. 6d). If larger
components are removed, important information may be lost.
Then, it is important to identify the inner cell nuclei that
these components may contain and divide them. Watershed
segmentation is performed using the binary image as a
marker over the red channel image to address this problem.
As observed in Fig. 6e, most of the particles were divided by
watershed. Nevertheless, it must be considered that not all
divisions correspond to a cell nucleus; some could be part of
tissue or background and must be removed. Since the particle
size information may change due to the segmentation, a
new granulometric analysis is performed over the fused
image containing all the particles of interest (Fig. 6f) to
ensure that the representative size of cell nuclei is known.
The circularity threshold is recalculated over the segmented
clumps to preserve only the rounder and larger cell nuclei
(Fig. 6g). The area threshold is determined by calculating the
mean and standard deviation of the areas of every detected
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particle. In this way, we discard possible clumps that have
not successfully segmented or some particles that may have
been over-segmented.

IV. TESTS AND RESULTS

The proposed methodology was tested on a subset of three
different databases containing H&E stained microscopic im-
ages of histological sections of breast cancer. The BreakHis
database [35] contains 9109 images with a resolution of
700x460 pixels, 24 bit depth and with about 82 different
cases (patients); these images have different magnification at
40x, 100x, 200x, and 400x. The Standford tissue microarray
database [36] contains 143 mammary carcinoma specimens
with a resolution of 2256x1440 pixels and 24-bit depth,
and the Breast Cancer Cell Segmentation database contains
58 images with a resolution of 896x768 pixels and 24-bit
depth and their corresponding segmentation groundtruth [37].
A subset of 107 images was selected from the BreakHis
databases, 29 images from the Standford tissue microarray
database, and all specimens from the Breast Cancer Cell
Segmentation database were used to assess the performance
of the proposed method.

Fig. 7. Papillary carcinoma segmentation image from BreakHis
Database [35]: a) Original image and b) the red markers of its cell nuclei
obtained after segmentation.

With the aim of test the proposed method under different
tissue conditions, there were analyzed images of papillary
and malignant carcinoma as well as benign tumors (Figs. 7-
9). As observed, there are differences in the images related to
the size of cell nuclei, staining contrast, and magnification.
Also, there are differences generated by the acquisition de-
vice, such as image resolution and bit depth-related to image
quality. For example, in Fig. 7 the edge of the histological
section (dark purple) presents low contrast, making difficult
its segmentation in individual components in some areas.
However, in the central area, the majority of the components
of interest were segmented. Figure 8 shows higher contrast
between the components, and the proposed method achieves
the segmentation of almost all the cell nuclei. Furthermore,
the granulometric analysis allows achieving relevant results
even when the magnification changes. For example, in Fig. 9
is shown a histological section containing larger nuclei where
most of them were segmented. Observing those cell nuclei
that could not be segmented has particular characteristics
such as elongated shapes that did not match a circular

criterion or clusters where the contrast could not be improved
even using a local contrast adjustment. One particular charac-
teristic of this last case is that some nuclei have low staining
and are surrounded or contain an even lighter area. Then,
they are not identified as components of interest.

Fig. 8. Breast malignant carcinoma image from the Stanford Tissue
Microarray Database [36]: a) Original image and b) its segmentation
superposed.

Fig. 9. Benign breast tumor image from Breast Cancer Cell Segmentation
Database [37]: a) Original image and b) its segmentation superposed.

A. Results evaluation

Groundtruth images, which were provided by the database
in [37], were used to evaluate the quality of the obtained
segmentation. Let denote Ss as the segmentation obtained by
the proposed method and St as the segmentation associated
with the groundtruth. An area-based metric was used to
analyze both segmentations by calculating the area of true
positives (TP) as STP = Ss ∩ St, false positives (FP) as
SFP = Ss−St, true negatives (TN) as STN = St−Ss, and
false negatives (FN) as SFN = E−Ss−St where E denotes
the region that includes all possible segmented regions. The
precision, sensitivity and similarity Sørensen–Dice coeffi-
cient (SDC) (5-7), a measure of similarity between two sets
in the range [0, 1] [38], [39], are computed.

DSC = 2·TP
2·TP+FP+FN (5)

Precision = TP
TP+FP (6)

Sensibility = TP
TP+FN (7)

Figure 10 shows two examples of original images (left)
and the image comparison between the obtained segmen-
tation (center) and its corresponding groundtruth (right). It
is observed a high similarity between results, although they
differ in how some components are presented. For example,
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Fig. 10. a1, b1) Original histological images , a2, b2) the segmentation re-
sults by the proposed method , and a3, b3) their corresponding groundtruth.

the groundtruth contains larger components associated with
nuclei clusters while the obtained segmentation divides most
of them. As mentioned before, a circularity criterion is used
since most of the components of interest have a high circular
degree. Therefore, elongated nuclei are not contained in the
obtained results. These differences are reflected in the value
of the Sørensen-Dice coefficient. For the first example in
Fig.10, it is observed a high similitude (SDC = 0.8643)
with the groundtruth where the main difference is the division
that watershed reaches in some clusters. The difference in
the second example is higher, causing a lower SDC =
0.7608. Nevertheless, there is a notorious difference in the
number of nuclei because of the circularity criterion that
must be fulfilled and the cluster division reached by the
proposed method. Then, these two processes are related
to a lower SDC since they remove part of the pixels in
the segmented image, but in return, accuracy is gained in
the correct identification of the nuclei. The results were
measured quantitatively through SDC values and compared
with the obtained measures using Active Contours [40] with
SDC = 0.6 and Otsu method [41] with SDC = 0.7.
Table I shows the statistics about segmented cell nuclei of the
whole database with and without considering the watershed
segmentation that allows cluster division. There was not a
significant difference between the SDC values, meaning that
the cell nuclei cluster division does not affect the evaluation
but could improve cell nuclei identification. An example
of this is shown in the comparison of Fig. 11 where the
proposed method reaches an accurate cell nuclei identifi-
cation even in overlapping or closer particles. Therefore,
eliminating nuclei that are not round enough contributes the
most to the difference in SDC values. Nevertheless, this is
not a negative contribution since eliminating non-round com-
ponents avoids the inclusion of artifacts (e.g., incomplete cell
nuclei), ensuring that only well-identified cell nuclei remain
in the final segmentation. Moreover, after several tests, it was
found that some cell nuclei are not present in the ground
truth, and the proposed method was able to detect them

(Fig. 12). This is another factor associated with the similarity
measure decay because it increases the difference between
the groundtruth and the resulting segmentation. However, the
elimination of elongated components and improvement in the
detection of nuclei are positive characteristics in terms of the
contribution of the method.

TABLE I
COMPARISON OF THE NUCLEI SEGMENTATION WITH AND WITHOUT

CLUSTER DIVISION AND WITH OTHER SEGMENTATION METHODS.

Measure No Cluster Cluster Active Otsu
Seg. Seg. Contours Method

Sørensen-Dice
Coefficient 0.78 0.75 0.611 0.7

±0.07 ±0.08 ±0.2 ±0.1
Precision 0.73 0.75 0.5 0.56

±0.09 ±0.09 ±0.2 ±0.1
Sensitivity 0.83 0.76 0.9 0.7

±0.1 ±0.12 ±0.1 ±0.1
mean±standard deviation

Fig. 11. Clump separation comparative. a) Ground truth and b) resulting
segmentation with proposed method.

Fig. 12. Particle detection comparative. a) Ground truth and b) resulting
segmentation with proposed method.

V. CONCLUSIONS

The high variation of intensity and characteristic forms
of the mammary cell tissue represents a challenge for the
automatic characterization and segmentation of the cell nu-
clei. Nonetheless, the general quality of the segmentation
depends on the robustness of the method to handle this type
of variation. The segmentation results achieved with the pro-
posed method are consistent under different image conditions
such as density of cells, magnification, and contrast, making
it useful in pathological analysis. A suitable cell nuclei
identification was reached by applying contrast adjustment
and morphological analysis that is automatically adapted to
the particular image conditions. Also, the comparison with
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a groundtruth shows a high similitude of the results. Other
similarity measures that may better reflect the significance
of the differences found will be tested in future work.
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