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Abstract—To explore the effectiveness of using Electro- 
encephalogram (EEG) spectral power and multiscale sample 
entropy for accessing mental workload in different tasks, 
working memory tasks with different information types (verbal, 
object and spatial) and various mental loads were designed 
based on the N-Back paradigm. Subjective scores, accuracy and 
response time were used to verify the rationality of the tasks. 
EEGs from 18 normal adults were acquired when tasks were 
being performed, an independent component analysis (ICA) 
based artifact removal method were applied to get clean data. 
Linear (relative power in Theta and Alpha band, etc.) and 
nonlinear (multiscale sample entropy) features of EEGs were 
then extracted. Indices that can effectively reflect mental 
workload levels were selected by using multivariate analysis of 
variance statistical approach. Results showed that with the 
increment of task load, power of frontal Theta, Theta/Alpha 
ratio and sample entropies at scale more than 10 in parietal 
regions increased significantly first and decreased slightly then, 
while the power of central-parietal Alpha decreased 
significantly first and increased slightly then. Considering the 
difference between task types, no difference in power of frontal 
Theta, central-parietal Alpha and sample entropies at scales 
more than 10 of parietal regions were found between verbal and 
object tasks, as well as between two spatial tasks. No difference 
of frontal Theta/Alpha ratio was found in all the four tasks. The 
results can provide evidence for the mental workload evaluation 
in tasks with different information types. 

I. INTRODUCTION 

The accurate evaluation of mental workload plays a 
significant role in ensuring the correct exclusion of tasks and 
the safety of manipulators in human-machine system [1,2]. 
Frequently used methods of evaluating mental workload 
include subjective measurement (e.g. NASA-TLX, SWAT, 
etc.), task performance measurement (e.g. response time, 
accuracy, etc.) and physiological measurement (e.g. EEG, 
ECG, etc.) [3]. Compared with subjective and task 
performance measurements, physiological measurement can 
objectively, continuously access operator’s mental workload 
without influencing the exclusion of task (Lots of researchers 
used EEG, ECG, eye movement and other physiological 
indices to access human’s mental workload [4-6]). However, 
owing to the diversity of the information types in interactive 
tasks, the issue that different physiological indices are 
sensitive to different kinds of task is still an obstacle when 
accessing mental workload in tasks with different information 
types [7]. Indices that can be effectively used in different tasks 
have not been proposed. 
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It was commonly accepted that EEG is the most sensitive 
physiological signal for its more direct reflection of the 
process of human’s brain compared with ECG, heart rate, eye 
movement, skin temperature etc. [8]. Previous studies 
introduced linear features of EEG to access mental workload, 
including statistic features in time domain [9], spectral power 
of specific bands in frequency domain [10-11] and so on, 
among which the power of Theta and Alpha bands were the 
most commonly used. The conclusions of different 
researchers, however, didn’t reach consensus. Gevins [10] 
found that the power of frontal Theta increased and parietal 
Alpha decreased along with the increment of the task load in a 
verbal and spatial N-Back task; significant difference in Alpha 
(more specifically Alpha II: 10.5-13Hz) was found between 
the two tasks. While Ke [11] found that the power of Theta 
and Alpha in frontal, central and parietal regions show 
significant difference in task with different loads in the same 
task, significant difference was also found in the two tasks 
considering the power of Theta and Alpha both. 

Nonlinear methods have been applied to researches of 
mental workload [13-14] to cover the shortage that linear 
analysis cannot effectively describe the complexity and 
regularity of EEG signal for its obvious nonlinearity [12]. Liu 
[13] found permutation entropies of EEG in frontal and central 
regions with scales larger than 15 can effectively distinguish 
different task loads in a verbal N-Back task. However, the 
applicability of the nonlinear feature of EEG in different task 
with different information types still remains uncertain. 

In conclusion, there are advantages and disadvantages to 
both linear and nonlinear analysis methods of EEG in the 
evaluation of mental workload. Spectral power can reflect the 
activation level of the brain, nonlinear features such as 
entropies show the complexity of EEG signals. The 
combination of these two methods may realize cross-task 
mental workload evaluation in tasks with different 
information types more effectively. In this paper, linear and 
nonlinear features of EEG were extracted and analyzed in 
working memory load tasks with different information types, 
their effectiveness of accessing mental workload in different 
tasks were explored, which can be helpful settling the issue of 
cross-task mental workload evaluation. 

II. METHODS 

A. Participants 

Eighteen right-handed, healthy subjects (9 males and 9 
females, Age: 25.6±2.4 years) with normal or corrected 
vision participated in the study. None of the participants had 
color blindness or color weakness. All participants gave 
written informed consent and the study was approved by 
Beihang University Ethics Committee. 
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B. Experiment Design and Data Acquisition 

N-Back paradigm was used and verbal or object items 
were presented in different positions of the checkboard, 
depicted in Fig. 1 (A). Specifically, each participant needed to 
perform four tasks, namely Verbal, Object, Spatial (Verbal) 
and Spatial (Object) N-Back. In the verbal or object task, 
participants were guided to judge if the letter (or the object) 
presented now is matched to the one presented previously 
without considering their positions; and in the two spatial 
tasks, positions of the items (letter or object) were the only 
information need to be considered. Three task loads were set 
by manipulating the “N” from 1 to 3. 

Taking verbal 2-Back task as an example, letters were 
presented on the screen sequentially every 2.5 seconds, each 
of them was displayed for 0.5 seconds and then disappeared. 
Participants should determine whether the present letter is the 
same as the second letter displayed previously. If so, “←” 
should be pressed and conversely “→”. All the participants 
performed 40 trials in each task at each level of load, 50% of 
which were set as matching answers. Response time of each 
trial was recorded during the experiments, accuracy of each 
task was calculated and NASA-TLX scale for subjective 
evaluation was asked to be completed after each task. 

 

Figure1. N-Back Task and EEG Electrode Locations 

The experiments were carried out in a sound-shielded 
room. EEGs (60 channels, electrode layout was shown as Fig.  
1 (C)) were recorded at 1000Hz by using NeuroScan system. 
The electrode impedances were kept below 10kΩ during 
recording. 

C. EEG Pre-processing  

Band pass filter (0.5-40Hz) was applied to eliminate direct 
component and noises with high frequencies. Eye blinks, 
vertical/horizontal EOGs and EMGs were removed from the 
original EEGs by using the auto-recognition algorithm 
SASICA [15] after resampling signals at 256Hz. Data were 
segmented into epochs started 500ms before stimulus onset 
and ended 2000ms after stimulus onset. 

D. Feature Extraction 

Welch’s method was used to calculate spectral power of 
each epoch at each channel. The relative power of Theta 
(4-7.5Hz) and Alpha (8-13Hz) were calculated as follows: 

     , , ,re k j jDelta Theta Alpha Beta
k S S    (1) 

kS represents power in k spectral, in which k valued as 

Theta or Alpha. The Theta/Alpha ratio of each channel was 
also calculated. 

Sample entropy can describe the non-linearity of signals, 
and multiscale entropy analysis [16] can quantify the 
complexity of time series on different time scales. Multiscale 

entropy of EEGs in each task was calculated in this paper. A 
coarse-graining processing was taken on the EEGs of different 
channels and scales were taken from 1 to 20 to reconstruct 
new time serials firstly. Then sample entropy at each scale was 
calculated. 

E. Statistical Analysis  

Multivariate analysis of variance method was used to 
analyze the relationship between power in different frequency 
bands as well as the multiscale sample entropy and mental 
workload in different tasks with various task loads. All the 
analysis was carried out by using SPSS 24.0. 

III. RESULTS 

A. Behavior Results 

NASA-TLX scores of different tasks were shown in Fig. 2. 
As expected, subjective scores in the four tasks increased with 
the task loads. Two-way ANOVA (4 task types  3 task loads) 
was performed and main effect of task load was observed 
(p<0.05). Multiple comparisons show that scores of tasks with 
different loads were significantly different from each other 
(1-Back vs. 2-Back: p<0.05, 2-Back vs. 3-Back: p<0.05) in all 
the four tasks. 

 

Figure 2. Average Subjective Scores for Each Task Condition for All 
Participants (Annotations * means p<0.05) 

Fig. 3 illustrated the mean accuracies and response time in 
the four tasks. It can be found that with the increment of task 
loads, the accuracy decreased and the response time became 
longer. Main effect of task load on both accuracy and response 
time were observed. Accuracies and response time of tasks 
with different loads were both significantly different from 
each other (for accuracy: 1-Back vs. 2-Back: p<0.05, 2-Back 
vs. 3-Back: p<0.05; for response time: 1-Back vs. 2-Back：
p<0.05，2-Back vs. 3-Back：p<0.05). Main effect of task 
type on response time was also found. 

 

Figure 3. Average Accuracy and Response Time for Each Task Condition for 
All Participants (Annotations * means p<0.05) 
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B. Spectral Analysis 

The brain area and their corresponding spectral features 
that can reflect mental workload were selected firstly. 
Specifically, power of Theta in frontal and parietal regions, 
Alpha in central-parietal regions and Theta/Alpha ratio in 
frontal-central regions show significant differences (p<0.05). 

 

Figure 4. Average EEG spectra over the 3-20Hz interval for each task 
condition at Fz for all participants  

Power spectra in the frontal (Fz) and parietal (Pz) regions 
were illustrated in Fig. 4 and Fig. 5. Results from ANOVA 
shows that with the increment of task loads, power of Theta 
band increased significantly first and decreased slightly then 
(1-Back vs. 2-Back: p<0.05, 2-Back vs. 3-Back: p>0.05) in all 
the four tasks; On the contrary, the power of Alpha band 
decreased significantly first and increased then (1-Back vs. 
2-Back: p<0.05, 2-Back vs. 3-Back: p>0.05). Fig. 6 displayed 
the Theta/Alpha ratio in frontal regions (Fz). It can be seen 

that the Theta/Alpha ratio presented the same regularity as 
power of Theta band. 

 

Figure 5. Average EEG Spectra over the 3-20Hz Interval for Each Task 
Condition at Pz for All Participants 

 

Figure 6. Average Theta/Alpha Ratio for Each Task Condition at Fz for All 
Participants (Annotations * means p<0.05) 

TABLE I.  MULTISCALE SAMPLE ENTROPY FOR EACH TASK CONDITION AT PZ 

 Verbal Object Spatial (Verbal) Spatial (Object) 

Scale 1 

1-Back 0.2460±0.1302 0.2341±0.1355 0.2673±0.1268 0.2536±0.1303 

2-Back 0.2574±0.1306 0.2744±0.1268* 0.2775±0.1219 0.2860±0.1206* 

3-Back 0.2623±0.1299 0.2630±0.1285* 0.2882±0.1288* 0.2919±0.1236* 

Scale 5 

1-Back 0.6136±0.3044 0.5846±0.3161 0.6563±0.2859 0.6642±0.2811 

2-Back 0.6285±0.2952 0.6724±0.2898* 0.6886±0.2733* 0.7025±0.2745* 

3-Back 0.6436±0.2925 0.6463±0.2995* 0.7037±0.2819* 0.7197±0.2721* 

Scale 10 

1-Back 0.6553±0.3160 0.6353±0.3397 0.7029±0.3047 0.7118±0.2925 

2-Back 0.6877±0.3202 0.7325±0.3050* 0.7471±0.2883* 0.7709±0.2950* 

3-Back 0.7018±0.3151* 0.7060±0.3267* 0.7641±0.2973* 0.7958±0.3002* 

Scale 15 

1-Back 0.7001±0.3363 0.6679±0.3482 0.7459±0.3299 0.7667±0.3234 

2-Back 0.7435±0.3547* 0.7934±0.3408* 0.8074±0.3293* 0.8318±0.3328* 

3-Back 0.7526±0.3414* 0.7652±0.3575* 0.8253±0.3336* 0.8517±0.3265* 

Scale 20 

1-Back 0.7385±0.3633 0.7205±0.3840 0.7870±0.3612 0.8119±0.3592 

2-Back 0.7858±0.3766* 0.8427±0.3814* 0.8503±0.3593* 0.8875±0.4428* 

3-Back 0.8021±0.3772* 0.8052±0.3840* 0.8703±0.3882* 0.9119±0.4548* 
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Comparations between different types at each task load 
were conducted and showed that there are no significant 
differences for frontal Theta power and central-parietal Alpha 
power between verbal and object task, as well as between two 
spatial tasks (p>0.05), while the differences between 
content-specific (verbal and object tasks) and spatial tasks 
were significant (p<0.05). No difference in Theta/Alpha ratio 
was observed in all the four tasks (p>0.05). 

C. Multiscale Sample Entropy Analysis 

Sample entropies at scale more than 10 of parietal EEG 
show a main effect on task load in all the four tasks (p<0.05). 
In the object and spatial tasks, meanwhile, significant 
differences were also found in sample entropies in frontal area 
(scales more than 10), central area (all the scales) and parietal 
area (all the scales). 

Table 1 shows the sample entropies of parietal (Pz) EEGs 
at each scale, in which “*” means there’s significant difference 
between 1-Back and 2-/3-Back. Sample entropies on scales 
more than 10 in verbal 2-Back and 3-Back tasks were found to 
be larger than that in 1-Back task (p<0.05), while difference 
was not observed between 2-Back and 3-Back tasks (p>0.05). 
In object and the two spatial tasks, sample entropies at almost 
all scales in 2-Back and 3-Back tasks were significantly larger 
than that in 1-Back task (p<0.05), difference between 2-Back 
and 3-Back was not observed either. 

No differences were found in verbal and object tasks 
considering the factor of task type. Sample entropies 
(scales≥14) in spatial (object) task were larger than that in 
spatial (verbal) task (p<0.05), and sample entropies at each 
scale in verbal and object tasks were smaller than that in 
spatial tasks (p<0.05). 

IV. DISCUSSION 

By designing N-Back tasks of different information types, 
regularities of EEG linear feature (spectral power in different 
frequency bands) and nonlinear feature (multiscale sample 
entropy) in different tasks with various loads were studied in 
this paper. The effectiveness of accessing cross-task mental 
workload with these features was analyzed meanwhile. 
Results showed that EEG power in frontal Theta, 
central-parietal Alpha, frontal-central Theta/Alpha ratio and 
sample entropies at scales more than 10 in parietal regions can 
reflect mental workload levels effectively. Regularities of 
power in frontal Theta, central-parietal Alpha and sample 
entropies at scales more than 10 in parietal regions in verbal 
task are consistent with those in object task, which indicated 
that these features are appliable in these two tasks. 
Theta/Alpha ratio has a consistency between the four tasks and 
may has the potential to be used in the cross-task mental 
workload evaluation.  

The frontal region of human brain was considered an 
important component of the attentional system and the Theta 
rhythm in this region was deemed to be associated with 
attention and concentration [10].The rise of power in frontal 
theta observed in this paper indicated an intensified mental 
effort was required when participants engage in more complex 
and attention-demanding tasks. The Alpha rhythm is thought 
to be generated at widespread area of cortex and appears to 
reflect a relaxed awareness state of human brain. Decline of 

power in Alpha band may mean the transition of brain state 
from “idling” to “active” when the task load was higher. 
Description of complexity by using sample entropy is based 
on the information measurement of time series . The larger 
sample entropy observed in tasks with higher load may 
indicate more complex information processing in the brain. 
The significant differences between content-based tasks and 
spatial tasks suggest more attention and mental effort are 
needed when processing spatial information. 

The slight difference between 2-Back and 3-Back tasks 
shown by ANOVAs may attributed to the constraint of 
working memory [16] that the response of human brain 
approached a plateau when task load met or exceeded the 
capacity. Deeper exploration should be carried out to inspect 
the general applicability of the linear and nonlinear features in 
tasks with other information.  
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