
  

 

Abstract— Aim: Brain-Computer Interfaces (BCIs) hold 
promise to provide people with partial or complete paralysis, the 
ability to control assistive technology. This study reports offline 
classification of imagined and executed movements of the upper 
and lower limb in one participant with multiple sclerosis and 
people with no limb function deficits. Methods: We collected 
neural signals using electroencephalography (EEG) while 
participants performed executed and imagined motor tasks as 
directed by prompts shown on a screen. Results: Participants 
with no limb function attained >70% decoding accuracy on their 
best-imagined task compared to rest and on at-least one task 
comparison. The participant with multiple sclerosis also 
achieved accuracies within the range of participants with no 
limb function loss. 
Clinical Relevance — While only one case study is provided it 
was promising that the participant with MS was able to achieve 
comparable classification to that of the seven healthy controls. 
Further studies are needed to assess whether people suffering 
from MS may be able to use a BCI to improve their quality of 
life. 

I. INTRODUCTION 
Loss of limb function is a devastating consequence of a 

range of neurological conditions including spinal cord injury, 
limb amputation, stroke, amyotrophic lateral sclerosis, and 
multiple sclerosis (MS) [1]. Brain-computer interfaces (BCIs) 
have the potential to provide paralyzed people with a new way 
of interacting with the world through technology. BCIs act as 
an artificial communication channel between the brain and 
external interfaces, such as communication or mobility 
devices.  

While several papers on EEG classification of movements 
mention that an EEG-based BCI may be useful for people 
with MS there is currently no work that has been performed 
with people with MS[2]–[4]. However, some studies have 
evaluated fatigue in MS participants using EEG [5], [6], and 
were able to generate brain signals and may be useful for a 
BCI. However, no studies have yet evaluated the potential for 
MS participants to use a BCI. Participants with limb function 
loss, when included in Research studies, are predominantly 
people with partial or complete paralysis from stroke [7], 
spinal cord injury[8], or amyotrophic lateral sclerosis (ALS) 
[9].  
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This is the first study to report EEG signals from a 
participant with MS in an offline BCI task with comparison 
to participants with no limb function loss. In the present study, 
we evaluated the performance of seven healthy participants 
and one participant with MS in five executed and imagined 
movements. We evaluated how within-subject and between-
subject performance varied in two-class and multiclass 
classification and whether movement-related EEG rhythms 
were subject-dependent or task-dependent.  

II. METHODS 

A.  Participants 
This experiment was approved by The University of 

Melbourne Human Research Ethics Committee (Ethics ID 
1748801). EEG recordings were performed in seven right-
handed volunteers (five male and two female) aged 20-23 
with no history of neurological disorders (S1-S7) and one 60-
year-old female with diagnosed MS (P1). P1’s MS manifests 
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Figure 1. Experimental setup. A. The structure of an individual 
trial, which either presented an instruction followed by Go/Stop 
or showed a fixation cross to indicate to rest. B. The 
instructions shown in the trials. C. The 10-20 EEG positioning 
system. AFz was the reference electrode and the other 24 boxed 
electrodes were recorded during the session. 
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as weakness of her left leg and right hand, she regularly 
practices imagining moving the affected hand and leg as well 
as physiotherapy. The severity of weakness was not assessed.  

B. Protocol 
Participants participated in a single session lasting less than 

2 hours in an electrically shielded, sound-proofed, darkened 
booth. Participants were seated in a comfortable chair 1 m 
from a 68 cm computer monitor and instructed to place their 
feet flat on the floor with their forearms resting on their legs. 
Instructions were displayed on the monitor using 
Psychtoolbox-3 [10]. Participants performed a session of 
executed movements followed by imagined movements. 

In each session, participants read and followed instructions 
on the screen. The structure of each trial is shown in Figure 
1A and consisted of a movement instruction, a ‘go’ or ‘stop’ 
cue, and a fixation cross. The instructions that were presented 
are shown in Figure 1B. Tasks included ‘Clench Left Hand’ 
(LH), ‘Clench Right Hand’ (RH), ‘Tap Left Foot’ (LF) and 
‘Tap Right Foot’ (RF), which was only used in the imagined 
instruction set. Participants were told to read the instruction 
and prepare to either make the movement or imagine moving. 
If the instruction was followed by a ‘Go’ cue, the participant 
was to go ahead with the movement or imagining the 
movement (go trial). If the prompt was followed by a ‘Stop’ 
cue, the participant was told to stay still and not imagine 
moving, clearing their mind while the fixation cross was 
displayed; this acted as a control (stop trial). The inter-trial 
interval was used as the Rest period. Participants S1-S7 
completed three 8-minute executed movement blocks. P1 and 
S1-S7 completed six 5-minute motor imagination blocks.  

C.  EEG Data Collection 
Common average referenced EEG signals were recorded 

using a TMS Porti 32-channel biosignal amplifier (Twente 
Medical Systems Incorporated, Netherlands) at a sampling 
rate of 2048 Hz via a TMSi-MATLAB interface. We used a 
TMSi EEG cap with 25 electrodes in the 10-20 international 
electrode location system shown in Figure 1C. 

D. Data Processing 
Data processing was performed using MATLAB 2016b 
(MathWorks Inc., Natick, MA, USA). Raw EEG signals were 
band-passed with a low half-power frequency of 3 Hz and 
high half-power frequency at 35 Hz.  Artifacts from the EEG 
were eliminated using the automatic artifact removal process 
published previously by Mammone et al. [11]. Enhanced 
Automatic Wavelet Independent Component Analysis 
eliminated the non-neuronal components of the EEG. Visual 
inspection was used to identify aberrant electrodes.            

E. Feature Extraction and Classification 
Average power in 4-8.5 Hz (theta), 9-15 Hz (alpha), 16-

22.5 Hz (low beta), and 23-32 Hz (high beta) frequency bands 
calculated in 25 ms segments. Power was calculated using the 
Fourier transform of the autocorrelation sequence calculated 
with a sliding (rectangular) window of 800 ms [12]. For each 
participant, the features were standardized (to the mean and 

standard deviation of each feature). A Support Vector 
Machine (SVM) was used to classify between 1) 
imagined/executed movements vs rest; and 2) between tasks 
(i.e LH vs RH, LF vs RF etc.) with 5-fold cross-validation. 

F. Statistics 
All statistical analyses were performed in MATLAB 2016b 

(MathWorks Inc., Natick, MA, USA). The level of agreement 
between accuracy from the executed and imagined tasks was 
compared using Bland Altman analysis. 

III. RESULTS 

Figure 2A shows randomly selected EEG traces during stop 
trial (control) and active (Clench Right Hand) from electrode 
C3, where ‘0’ indicates the time that ‘Go’ or ‘Stop’ cue was 
presented. Data is from one trial from one able-bodied 
participant. Figure 2B shows the power spectra corresponding 
to the EEG traces in Figure 2A. The power spectra were 
calculated from single-trial filtered data between 0-1.8s 
(Figure 2B). The power spectra in Figure 2B shows a decrease 
in the power of the alpha and beta frequencies in the 4-24 Hz 
range during movement compared to no movement.  

A. Executed/Imagined movement vs rest 
Figures 3A and B show the evolution of mean +/- standard 

error of the classification accuracy of the Executed/Imagined 
movement vs rest. Figures 3A and B show time during 
executed (Figure 3A) and imagined movements (Figure 3B) 
vs rest. The asterisk shows the maximum decoding accuracy 
within the interval starting 0.2-1.0 s after cue presentation. 
The time of the maximum decoding accuracy during executed 
movement (0.71 ± 0.1 s, mean ± standard deviation) was 
similar to imagined movements (0.72 ± 0.1 s).  

The time of the maximum decoding accuracy was normally 
distributed, and a two-tailed t-test showed no significant 
difference between the time of imagined or executed 
movement (p = 0.15). The timing of the maximum decoding 

Figure 2: Sample outputs and analyses. A) Sample EEG traces 
and B) corresponding power spectra from a single electrode 
(C3) during single active (Clench Right Hand) and control trials.  
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accuracy during imagined movement was not different 
between the participant with MS (0.70 ± 0.2 s) and the healthy 
subjects’ population (S1-S7 mean, 0.72 ± 0.1s).  

 Figure 3 (S1-S7) shows the mean decoding accuracy 
between each movement (LH, RH, LF, RF) and rest (intertrial 
interval). There was no difference between imagined 
maximum decoding accuracy = 0.73 ± 0.09 or executed 
maximum decoding accuracy = 0.72 ± 0.07 (mean of LH, RH, 
LF, RF). However, there was variation between participants 
in performing the tasks. P1, showed a maximum decoding 
accuracy of 0.71 ± 0.04 across the four imagined movements. 
Bland-Altman analysis showed overlapping means for 
executed and imagined movement with limits of agreement 
between -0.24 to 0.24 and were not correlated (Spearman ρ = 
-0.10, p = 0.60).  

B. Classification between individual movements  
Figure 4 shows the evolution of classification accuracy for 

right hand vs right leg in executed (Figure 4A) and imagined 
(Figure 4B) movements. Timing of the maximum decoding 
accuracy during imagined movement (0.61 ± 0.3s, mean ± 
standard deviation) was not statistically significantly different 
to executed movements (0.69 ± 0.3s, p = 0.15, paired t-test). 

Figure 4 (S1-S7, P1) shows classification accuracies 
between different task pairs. Like executed/imagined 

movement vs. rest, binary classification between specific 
movements showed inter-subject differences. A paired t-test 
showed that there were no statistically significant differences 
between imagined/executed movement accuracies (p = 0.61). 
The mean classification accuracy between movements 
(executed: 0.65 ± 0.05, imagined: 0.66 ± 0.09) was lower than 
movement vs rest for executed movements (0.73 ± 0.09) but 
not imagined movements (0.72 ± 0.07). The classification 
accuracy during imagined movements was 0.66 ± 0.09 for 
participants S1-S7 and 0.63 ± 0.01 for participant P1.  

IV. DISCUSSION 
All participants (including the participant with MS), 

achieved decoding accuracy above chance level with greater 
than 70% accuracy in the task vs rest demonstrating that 
accuracy was sufficient for use as a brain-computer interface 
(BCI) [13]. There was no difference between imagined and 
executed movement classification accuracies and there was 
no difference between movement classification accuracies.  

Decoder performance for the participant with MS was 
comparable to healthy participants. MS is a heterogeneous 
disease with many variations of symptoms, however sufferers 
with partial or complete paralysis could benefit from BCI use. 

Figure 3: Executed/Imagined Movements vs rest. A and B) 
Example SVM decoding accuracy vs time (from cue in 
seconds ‘0’). The shaded area shows the standard error of 
the mean. Black traces show decoding accuracy. Grey traces 
show decoding accuracy with scrambled labels. The asterisk 
shows the maximum decoding accuracy between intervals 
starting 0.2-1.0s after cue presentation. Maximum decoding 
accuracy for each task vs rest in each subject S1-S7 and one 
participant with MS (P1).  Closed circles represent executed 
movement, open circles represent imagined movement, the 
error bars represent standard error of the mean. The Dashed 
line shows the upper limit of the 95% confidence interval of 
the theoretical chance level (0.5).   

Figure 4: Classification between tasks. A and B show examples of 
the SVM accuracy vs time from cue ‘0’. The asterisk shows the 
leading edge of the 800ms analysis window representing the 
maximum between 0.2-1.0 s after the cue. The shaded area depicts 
the standard error of the mean. The black trace represents 
accuracies from true labels and the grey trace represents 
accuracies with scrambled labels. Maximum decoding accuracy 
for each combination of tasks in each subject S1-S7 and one 
participant with MS (P1). Closed circles represent executed tasks, 
open circles represent imagined tasks, the error bars represent 
standard error. The Dashed line shows the upper limit of the 95% 
confidence interval of the theoretical chance level (0.5).   
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The participant with MS (P1) was able to achieve comparable 
classification accuracy to the healthy participants while 
imagining the different motor tasks. This would suggest that 
P1 is still capable of producing classifiable Sensory Motor 
Rhythms (SMR) changes despite having some loss of 
function in some of the tasks. Whether the participant’s 
regular motor imaginings contributed to her classification 
performance is also unclear. It is worthwhile investigating 
with a larger participant pool whether people with MS 
generally retain the ability to produce classifiable signals 
while performing imagined motor movements. If it is a 
general feature, then BCIs may be able to assist people with 
MS to retain their motor ability with the help of a BCI-linked 
muscle stimulator or exoskeleton. Such a system could 
improve the participant’s function and protect them from the 
muscle wasting associated with partial and total paralysis. 

Participants’ abilities in movement execution may not 
translate to movement imagination. Interestingly, there was 
no correlation between the accuracies of decoding imagined 
movements and executed movements. A participants 
performance in an execution task could not be used to 
determine how well they may perform in an imagined task. 
Intuitively, it may be assumed that people who can perform 
an action can equally be able to imagine movement-
generating EEG signals. However, this was not the case; some 
participants whose decoding accuracy was high in imagined 
tasks only achieved chance level accuracy in the movement 
task and vice versa. Considering that conditions such as MS 
and motor neuron disease are progressive, it may be beneficial 
to train people with these conditions before complete loss of 
limb function, which may help reduce training time and lead 
to greater adoption. It is tempting to think of a BCI as 
augmenting or using existing ability to achieve control. 
However, the disassociation between movement execution 
and imagination indicates the ability to control a BCI may 
need to be treated as a new skill that needs to be acquired. 
Research on training effects on BCI control has been 
promising but not conclusive [14], [15]. Further work on the 
effect of long-term training for a BCI use would be required. 

V. CONCLUSION 
This study demonstrates the future possibilities of EEG-

based SMR to be utilized to implement a BCI to meet the 
needs of people with MS. Promisingly, the participant with 
MS was able to achieve comparable classification to the seven 
healthy participants. Future work should include a measure of 
MS. The case study shows that people with MS can use a BCI. 
There is an imperative to further investigate how MS 
progression affects motor activity in the brain using EEG with 
larger participant pools and with long-term studies. 
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