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Abstract— This paper investigates for the first time the
use of single-frequency phase-coded stimuli to detect covert
visuo-spatial attention (CVSA) with steady-state visual evoked
potentials (SSVEP). Two 15Hz pattern-onset stimulations were
encoded with opposite phases and simultaneously presented
on a LCD monitor. The effects of attending each stimulus
on the amplitudes and phases of the evoked SSVEPs across
the visual cortex are explored. A real-time CVSA classification
experiment was simulated offline with 9 BCI-naive subjects,
achieving an average classification accuracy of 88.4 ± 8% SE.
Our results are, to our knowledge, the first report that CVSA
can be decoded with SSVEP using single-frequency phase-
coded stimuli. This opens opportunities for attention-tracking
applications with largely increased number of targets.

I. INTRODUCTION

Covert Visuo-Spatial Attention (CVSA) is the human abil-
ity to commit attention to locations in the peripheral field of
view without any overt eye movement [1]. CVSA is essential
for many everyday activities, because it allows us to improve
discriminability in visual tasks, such as contrast sensitivity
[2], [3], texture segmentation [4], and visual search [5].
CVSA processes have been widely studied to understand how
humans behave when performing certain cognitive visual
tasks or activities [6]–[8]. Since covert shifts of attention can-
not be observed externally, electroencephalography (EEG)
provides access to these events [8]. One of the most used
approaches to monitoring what locations in the visual field
covertly receive spatial attention consists of studying how
certain brainwaves respond to visual stimuli. It has been
shown that neuronal responses to visual stimuli are amplified
when attention is directed to the stimuli, compared to when
the stimulus is unattended [9], [10]. In particular, Steady-
State Visually Evoked Potentials (SSVEP) are one of the
most widely used processes for this purpose due to their
straightforward implementation and high signal-to-noise ra-
tio (SNR).

SSVEP are oscillatory signals generated at the visual
cortex that occur in response to visual stimulation at specific
frequencies [11], [12]. When a person overtly or covertly
shifts the attention to a particular flickering stimuli, the
amplitudes of the evoked SSVEP increase with respect
to when the stimuli is ignored [9], [13]. This has inter-
ested researchers in the field of Brain-Computer Interfaces
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(BCI). Since monitoring CVSA enables the creation of gaze-
independent BCIs, it can allow severely disabled patients
who cannot move their eyes to communicate, among other
applications. In [14] and [15], the authors employed SSVEP
modulations evoked by frequency-coded stimuli in the right
and left periphery to detect which stimulus was covertly
receiving the attention of the user. They used 10.03Hz and
12.04Hz as the stimulation frequencies. The authors in [9]
studied the effects of selective attention on the SSVEP in the
low-frequency range (8-12Hz), and the authors in [13] did
a similar study in the mid-frequency range (20-28Hz). They
all concluded that the SSVEP were modulated by CVSA.

Visual selective attention can be committed not only to
spatial regions in the visual field but also to non-spatial
features, like colors, motions, or orientations. This receives
the name of Feature-Based Attention (FBA) and it functions
independently of spatial attention [16]–[18]. Similarly to
CVSA, FBA also increases neuronal responses in the brain
regions that process the attended feature [19], [20]. This
opens the door to other modalities of SSVEP-based BCIs,
where the SSVEP modulations are evoked by shifts between
visual features instead of spatial locations [7], [20], [21].

In order to increase the applicability of these systems,
minimizing eye fatigue and user discomfort created by the
flickering stimuli is a key factor. Thus, there is a recent trend
among visually evoked potentials-based BCI researchers to
utilize frequencies above the flicker fusion rate to make the
stimuli imperceptible [22]–[25]. This requirement reduces
considerably the number of possible different stimuli targets
since the monitor refresh rate further limits the frequencies
that can be rendered. In an effort to increase the number of
targets for a single flickering frequency, our work explores
incorporating phase information into the stimuli and decod-
ing it from CVSA-enabled systems.

It is well known that SSVEPs are time and phase-locked
to the stimuli [26], [27]. This characteristic has been widely
exploited to develop SSVEP-based BCI systems with phase-
coded stimuli [28]–[30]. However, to the best of our knowl-
edge, phase has never been used as the target-encoding
element in CVSA-enabled systems. This paper explores
for the first time the use of covert visuo-spatial attention
to discriminate single-frequency phase-coded stimuli using
SSVEP and presents encouraging results for its implementa-
tion in BCIs.
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II. METHODS

A. Participants

10 healthy subjects, age 25-36 (mean=29.3, SD=3.2) with
normal or corrected-to-normal vision participated in this
study. Subjects were seated in front of a monitor and placed
their heads on a chin rest so that the distance and visual
angles to the stimuli were kept constant. The chin rest was
located 53 cm away from the monitor, as seen in Figure 1.
The study was approved by the MIT Committee on the Use
of Humans as Experimental Subjects.

B. Data Acquisition

EEG data was acquired using an Enobio system from
Neuroelectrics [31] with 7 electrodes located in the parietal
and occipital regions using the 10-20 distribution (PO3, PO4,
PO7, PO8, O1, Oz, O2) at a sampling rate of 500Hz. The
reference and ground electrodes were placed at FPz and
left mastoid respectively. The electrooculogram (EOG) was
recorded using two electrodes placed on either side of the
eyes (i.e. outer canthi) to monitor lateral eye movements and
blinks. To synchronize the EEG data with the stimulus onset,
a photo-diode captured the changes in luminance of a dummy
square that flickered with zero reference phase, and it was
covered so that subjects could not see it.

C. Stimuli Design

The stimuli were presented by an LCD monitor with a
refresh rate of 240Hz. As shown in Figure 2, the stimulus
setup was formed by two flickering white squares, all flashing
at 15Hz, and they were encoded by opposite phases (0 and
π). The on-off duty cycles were 50/50 for both squares. Each
square had a size of 200x200 pixels, which accounted for
6.7◦ of visual angles. A fixation cross was rendered at the
center of the screen and the subjects were asked to maintain
visual fixation on it. Black alphanumeric character sequences
were superimposed on the flickering white squares, and had
the function to capture the covert attention of the subjects.
Inspired by the methodology in [9], the character sequence
consisted of randomized displays of letters A to Z and the
number 5, which was defined as the infrequent covert atten-
tion target, appearing with a probability of 0.08 per character.
The sequence of characters was presented concurrently at
the right and left positions, with a duration of 200 ms per
character. Each visual field received a different randomized
sequence per trial. The stimulation software was written in
Matlab using the Psychophysics Toolbox [32].

D. Experimental Procedure

Each trial began with a countdown of 4 seconds, and either
a left or right-pointing arrow indicated which sequence the
subject had to commit attention to during that trial. Each
stimulation trial was 7 seconds long. Subjects were asked to
gaze at the central fixation cross during the 7 seconds and
focus the attention on the corresponding character sequence.
When a target character (”5”) was presented on the attended
sequence, subjects had to press the space bar of a keyboard,
and the response times were recorded. The responding hand

Fig. 1: Experimental setup. A photo-diode (upper left) was
used to synchronize the stimulation trials with the captured
data. Top right drawing shows the EEG electrodes placement
according to the international 10-20 system. Colors represent
data channels (purple), reference (blue), ground (green) and
EOG (yellow) electrodes.

Fig. 2: Visual display utilized in the experimental sessions.
A synchronization square was located at the top-left corner
of the display, and it was covered so that subjects could not
see it.

was counterbalanced across experimental trials. Subjects
were asked to avoid blinks or head movements during the
7-second stimulation. Trials were recorded in blocks of 20
– 10 attending left square and 10 attending right square,
sequentially alternating between left and right. Each block
was repeated 10 times, so the whole experiment consisted of
200 7-second individual trials, 100 for each location.

At the end of the main 10 blocks, an extra 20-trial
block with single-stimulus was recorded with 10 trials only
showing the cued left targets (and no flickering square on
the right), and 10 trials with only the cued right targets (no
flickering square on the left) . This allowed us to capture the
evoked SSVEPs without the effect of the unattended square.

The experiment started with an introductory session for
baseline recording, alpha waves monitoring and EOG cal-
ibration. The total duration of an experiment was approxi-
mately 90 minutes.

E. Trial rejections

An important data selection process is to remove trials in
which the user is not properly attending the cued square.
To identify them, key-press response times following target
(”5”) onset were measured. If the response time was not
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within a 200ms-1200ms interval after onset, it was marked
as a missed target. The averaged percentage of correct target
detections across subjects was 76.2%, with a standard error
of 4.43%. If, within a 7-second trial, more than half of
the targets were missed, we categorized the subject as not
paying enough attention during the sequence, and that trial
was rejected. Across subjects, an average of 17.8 trials were
rejected (8.9%).

Trials with undesired eye movements had to be rejected
as well. The EOG signals were analyzed offline to consider
3 undesired events: eye blinks, eye saccades (or gaze jumps)
and smooth pursuit eye movements. The calibration session
was designed to characterize the EOG of undesired events
that could affect the EEG data. The whole trial was rejected if
any of these 3 EOG patterns was detected during the visual
inspection. Across subjects, an average of 15.8 trials were
rejected. One of the subjects presented difficulties to get a
good ground electrode contact, which was reflected on the
overall quality of the EEG and EOG data captured. Hence,
we decided to remove this subject from the data set.

F. Time-domain Averaging Analysis

In this study all analysis was done offline. Epochs for
each 7-second trial were extracted (from 0 - 7000 ms post-
target onset time) and band-pass filtered using a 4th order
Butterworth zero-phase filter with a passband of 5-60 Hz.
Then, trials corresponding to ”attend left” and ”attend right”
were averaged separately in the time domain. Hence, two
7-second averaged epochs were obtained per subject at each
scalp site. To extract the resultant phases and amplitudes of
the evoked SSVEP, a 3-second moving window with steps of
200ms was applied to the 7s averaged epochs. For each of
the windowed 3-second epochs, amplitude and phase of the
15Hz SSVEP were computed at each scalp site using the Fast
Fourier Transform (FFT). SSVEP amplitudes were calculated
normalizing by the number of FFT samples to obtain results
in microvolts, and phases were computed from the ratio of
the signed real and imaginary components. For each subject,
22 amplitude-phase pairs were obtained. Polar plots of these
epochs for a particular subject can be seen in Figure 3a,
revealing that the distribution of the points is dependant on
the attention side of the subject.

G. Real-time Analysis

We explored the feasibility of detecting the subject’s covert
attention in real-time. We simulated a real-time scenario
during offline analysis.

A moving window of N seconds and steps of 200ms
was applied to each one of the 7-second individual trials,
where N varied from 0.5 to 5 seconds. Similarly as in the
Time-domain Averaging Analysis (Section II-F), for each
of the windowed N-second epochs, amplitude and phase of
the 15Hz SSVEP were computed at each scalp site using
the FFT. From the polar plots shown in Fig 3a, we can
see that the 2D positions of the amplitude-phase points
for each scalp site vary with the attention site. Thus, x-y
coordinates of the amplitude-phase plot for each channel

(a) Both stimuli simultaneously. Attention target cue was left
(orange) or right (purple) square.

(b) Single-stimulus trials. Attention target cue was left (orange) or
right (purple) square. Notice the 180-degree offset between point
clouds for the left and right stimulus.

Fig. 3: SSVEP amplitudes (µV) and phases (deg) for all the
7 electrodes of windowed 3-second epochs obtained from
time averaged trials for subject number 3, for multiple (3a)
and single-stimuli (3b) conditions.

epoch were used as features for the classifier. To extract
more information from each epoch, amplitude and phase of
the first SSVEP harmonic (30Hz) were also computed and
included as features. This way, one feature vector consisted
of 28 features (2 features per scalp site and frequency).
The number of data points varied depending on the moving
window length, spanning from 1,200 to 3,500 for each class
and subject. All features were normalized and standardized
(z-scored).

A 10-fold cross validation paradigm was implemented for
the train-test procedure. A logistic regression classifier was
chosen since it showed good performance and is the most
parsimonious classifier for binary classification.

III. RESULTS

A. Time-domain Averaging

The SSVEP amplitudes and phases from each subject can
be plotted on the imaginary plane using polar coordinates.
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Fig. 4: Amplitudes and phases of resultant 15Hz SSVEPs
from subject 3 plotted in polar coordinates on each scalp
site. Amplitudes are represented by line length. Phases are
plotted with cosine-onset convention with 0◦ to the right
and +90◦ upwards. PO8 and PO7 show opposite behavior,
suggesting the effect of visuo-spatial attention directionality
on the signal’s phase.

These polar plots show how these amplitude-phase pairs
are distributed depending on which target the subject was
covertly attending to. An example of such plots for one
subject can be seen in Fig 3a. Each dot or vignette rep-
resents the polar coordinates (magnitude and phase) from an
electrode’s windowed 3-second epoch. Color represents the
attended square. We can see how data-points are clustered
for each scalp site, proving that the computed phases and
amplitudes are consistent during the trial. Within a particular
attending condition (attend left or right), it can be seen that
the topography of the SSVEPs changes across the scalp.
For example, the responses in the most lateral regions at
opposite hemispheres oscillate with opposite phases (PO7
vs. PO8). This can be due to the role of the optic chiasm
in the vision pathway [33]. It can also be seen that all scalp
site point clouds drift to the same direction on the imaginary
plane when subject attends to the left or right stimulus. This
suggests that it is indeed possible to discriminate where in
the visual field the user is covertly directing the attention
by phase-coding the stimuli and analyzing the position of
the amplitude-phase pairs in the polar plot. For comparison
purposes, similar plots were obtained from the average of the
10 trials that had been recorded with only the cued square
appearing on the display, i.e. with single stimulus (3b).

In order to quantify the change in amplitude and phase of
the SSVEP waves between the cue-left and cue-right epochs,
the centroid of each scalp site point-cloud was computed. In
Figure 4, amplitudes and phases of the averaged SSVEPs
for each scalp site are shown. PO7 and PO8 show opposite
behavior, suggesting the effect of visuo-spatial attention
directionality on the signal’s phase. In Figure 5 we show
the displacement vectors representing the drift of amplitude-
phase data points in the polar plane when subjects switch
attention from left to right stimulus. Left to right criterion
was chosen arbitrarily. This switch in attention is subject-
specific, i.e. each subject has their own orientation. As seen,
there is a common ”flow” across all scalp sites, so there is

Fig. 5: Vectors representing the drift of amplitude-phase
datapoints in the polar plane at each scalp site when subjects
switch attention is from left to right stimulus. A common
flow can be seen across all scalp sites within each subject.
Flow orientation is subject-dependent.

similar amplitude-phase change at the measured visual cortex
regions when the subject covertly changes the attention
location. This suggests that the centroid of the 7 points could
be used as a feature to discriminate what stimulus the subject
is attending to.

The absolute change in amplitudes and phases was com-
puted for each channel and subject in order to quantify how
much each scalp region reacts to the change of attention side
(left to right). Absolute values of the differences (attend left
- attend right) were taken. An ANOVA test was performed
to explore whether the amplitude and phase shifts of the
averaged trials were more prominent in certain scalp sites.
ANOVA tests (N = 9, df = 6) showed no significance
for both amplitudes and phases shifts (p > 0.05 for both
cases). Therefore, all cortical regions, across subjects, exhibit
comparable changes in both SSVEP amplitudes and phases
when attention side is switched. A bar chart with the averages
across subjects can be visualized in Figure 6.

To visualize more general behavior of the SSVEP re-
sponses, we computed the centroids of the amplitude-phase
pairs of all channels for cue-left and cue-right conditions,
and this was done for both multi and single stimuli cases.
The resulting plots can be seen for all subjects in Figure 7.
As expected, in the single stimulus trials there is a clear 180
degree phase offset between cue-right and cue-left responses.
It seems there is no common pattern in the amplitude-
phase shifts for the multi-stimuli responses with respect to
the single-stimuli case. This suggests that the multi-stimuli
SSVEPs are not only the result of a combination of the
original single-stimuli waves with amplitude modulations,
but also that phase changes are required to lead to the
resulting multi-stimuli waves.
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Fig. 6: Averages, across subjects, of the absolute values of
the differences in SSVEP amplitudes and phases between
cue-left and cue-right time-domain-averaged trials for each
scalp site. Error bars represent standard errors.

B. Real-Time CVSA Classification

A real-time CVSA classification was simulated offline
using the features obtained from the epochs given by a
moving window as explained in Section II-G. Resulting test
accuracies for unseen data are shown in Figure 8. The line
for each subject represents the averaged accuracy computed
from the 10-fold cross validation. The mean accuracy across
subjects reaches 88.4 ± 8%, with a maximum accuracy of
98% for Subject 2. Subjects 7 and 8 show significantly lower
performance than the rest. SNR, number of trials rejected
and number of feature vectors used for the classifier were
analyzed for these two subjects. Neither of these variables
accounted for the accuracy differences with respect to the
other subjects.

IV. DISCUSSION AND CONCLUSION

This paper studies the effects of covert spatial attention
on the SSVEPs using single-frequency phase-coded stimuli.
The present findings suggest that the topography of the
phase-coded SSVEP responses across the scalp is sensitive to
spatially focused attention. Therefore, we have demonstrated
the feasibility of utilizing phase-coded stimuli to discriminate
where in the visual field the subject is covertly attending to.

Amplitude-phase pairs of all channels shift towards the
same direction in the polar plane, and all cortical regions
experience statistically comparable changes (p > 0.05) in
both SSVEP amplitudes and phases when switching the side
of attention. The direction of the amplitude-phase shift is
variable and subject-dependent. Trials with single-stimulus
were run so the evoked cortical responses could be compared
with the multi-stimuli SSVEPs. Results show that, across
subjects, there is no common pattern in the amplitude-
phase shifts for the multi-stimuli responses with respect to
the single-stimuli case. This suggests that the multi-stimuli
SSVEPs are not only the result of a combination of the
original single-stimuli waves with amplitude modulations,
but also that phase changes are required to lead to the
resulting multi-stimuli waves. Similar effects were observed

Fig. 7: Centroids of amplitude-phase pairs of all channels
for cue-left or cue-right. Single-stimuli trials in pink, multi-
stimuli in green.

in [13], where there could be seen a shift in SSVEP phases
at many scalp sites between the attended and the unattended
conditions in a frequency-coded stimuli experiment.

A pseudo real-time CVSA classification was explored
offline by exploiting the topography of the SSVEP responses.
The amplitude and phase of the SSVEPs – fundamental and
first harmonic – at each scalp site were used as features
to train a logistic regression classifier on each subject. The
system achieved an average classification accuracy of 88.4 ±
8% on unseen data. To the best of our knowledge, this is the
first time a system has been shown to discriminate covert
visuo-spatial attention in (pseudo) real-time using SSVEP
from phase-coded stimulation.

The discovery that the SSVEPs to 15Hz phase-coded
stimuli can be modulated by covert attention opens the door
to utilizing this modulation in applications that track CVSA.
This finding can largely increase the number of targets by
adopting more efficient coding techniques such as the joint
frequency-phase modulation.

Future work will consist on exploring if similar effects
take place in higher frequency bands, as well as examining
the maximum number of phases that can be encoded in a
unique frequency. As far as the real-time approach, more
sophisticated algorithms can be used going forward, such as
task-related component analysis (TRCA) [34], or xDAWN
algorithm [35], which can help to improve the SNR and
hence the system performance.
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Fig. 8: Classification accuracy for unseen data as a function
of data length used to extract amplitude and phase fea-
tures. Chance curve represents the classifier accuracy with
randomly shuffled labels. The error bars represent standard
errors.
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