
  

  

Abstract— Older adults with dementia have a high risk of 

developing drug-induced parkinsonism; however, formal 

clinical gait assessments are too infrequent to capture 

fluctuations in their gait. Camera-based human pose estimation 

and tracking provides a means to frequently monitor gait in non-

clinical settings. In this study, 2160 walking bouts from 49 

participants were recorded using a ceiling-mounted camera. 

Recorded color videos were processed using AlphaPose to obtain 

2D joint trajectories of the participant as they were walking 

down a hallway of the unit. A subset of 324 walking bouts from 

14 participants were annotated with clinical scores of 

parkinsonism on the Unified Parkinson’s Disease Rating Scale 

(UPDRS)-gait scale. Linear, random forest, and ordinal logistic 

regression models were evaluated for regression to UPDRS-gait 

scores using engineered 2D gait features calculated from the 

AlphaPose joint trajectories. Additionally, spatial temporal 

graph convolutional networks (ST-GCNs) were trained to 

predict UPDRS-gait scores from joint trajectories and gait 

features using a two-stage training scheme (self-supervised 

pretraining stage on all walks followed by a finetuning stage on 

labelled walks). All models were trained using leave-one-subject-

out cross-validation to simulate testing on previously unseen 

participants. The macro-averaged F1-score was 0.333 for the 

best model operating on only gait features and 0.372 for the top 

ST-GCN model that used both joint trajectories and gait 

features as input. When accepting predicted scores that were 

only off by at most 1 point on the UPDRS-gait scale, the accuracy 

of the model that only used gait features was 82.8%, while the 

model that also used joint trajectories had an accuracy of 94.2%.  

Clinical Relevance— The combination of gait features and 

joint trajectories capture parkinsonian qualities in gait better 

than either group of data individually. 

I. INTRODUCTION 

Parkinsonism describes motor symptoms that are 
consistent with Parkinson’s disease (PD) [1]. With respect to 
gait, individuals in early stages of PD often exhibit lateral 
asymmetry in their movement and decreased range of motion, 
while freezing of gait, instability, and an increased risk of 
falling is common at more advanced stages of PD [2]. 
Parkinsonism is also common in individuals with dementia, 
with an estimated 30 – 60% incidence rate in this population 
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when treated with antipsychotic medications [3], [4]. In 
addition to disease progression, the severity of the 
parkinsonian symptoms a person experiences may vary due to 
a number of factors including medication use, dual-tasking, 
and the surrounding environment [2]. 

In clinical settings, parkinsonism in gait is assessed 
visually by clinicians and quantified using the gait criterion of 
the Unified Parkinson’s Disease Rating Scale (UPDRS), an 
integer scale from zero (no impairment) to four (severe 
impairment) [5]. Because the severity of parkinsonian 
symptoms may fluctuate throughout the day, short-term 
changes in gait may be missed due to the infrequent nature of 
clinical gait assessments. Therefore, there is an opportunity to 
use an automated system to assess gait in non-clinical settings, 
allowing clinicians to identify and manage changes sooner.  

Camera-based systems are well-suited for longitudinal gait 
assessment in residential settings as they can unobtrusively 
monitor the entire body with a single sensor [6]. Previous 
studies have explored the use of 3D joint positions obtained 
using Microsoft Kinect sensors to analyze parkinsonian gait 
[7], [8]. However, the Kinect depth sensor is only accurate in 
distances between 0.5 – 4.5 m, and is thus limited in the 
number of gait cycles it can capture [9]. Standard RGB video 
does not have this limitation, and deep-learning pose 
estimation libraries (such as AlphaPose [10]) have facilitated 
the extraction of 2D joint coordinates from standard video. 
Previous studies have used 2D joint trajectories to calculate 
joint angles and spatiotemporal features of gait [11], [12] and 
to identify parkinsonian gait in home videos [13], [14].  

Moreover, deep learning models for analyzing joint 
trajectories have been recently proposed. Spatial temporal 
graph convolutional networks (ST-GCNs), which use filters 
that leverage the inherent spatial structure in skeleton 
trajectories, have been used for human action recognition with 
great success [15]. These models have been successful in 
distinguishing between a large set of very different 
movements, but their performance on more subtle tasks such 
as evaluating gait quality on clinical scales remains unclear.  
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This study will examine whether ST-GCN models trained 
on trajectories of joint positions extracted from video result in 
better regression to parkinsonism severity (as quantified using 
UPDRS-gait scores) than models trained on gait features. This 
work will use a challenging dataset of natural walking bouts of 
individuals with dementia, collected in a non-clinical setting.  

II. METHODS 

A. Data Collection 

The data used for this study were collected as part of two 
larger, independent studies. The Research Ethics Board of the 
institute approved the protocols for both studies. The core of 
the dataset used in this study was collected at a specialized 
dementia in-patient unit of the Toronto Rehabilitation Institute 
(TRI), with all participants having a diagnosis of dementia. 
Participants capable of unassisted ambulation over 20 m were 
recruited for this study. Substitute decision makers provided 
consent, and data collection was only performed if participants 
also provided assent.  

The onboard RGB camera (30 Hz, 1080 × 1920 pixels) of 
a ceiling-mounted Microsoft Kinect v2 system was used to 
record the natural gait of participants as they walked down a 
hallway of the dementia unit. To protect the privacy of other 
individuals in the hallway, Radio Frequency Identification 
(RFID) tags affixed to the participants’ pants were used to 
trigger a 30 second video recording only when a participant 
walked by radio-frequency antennae located at the beginning 
of the hallway [16], [17]. This system facilitated the 
longitudinal recording of participants’ natural gait over the 
course of several weeks during their stay in the dementia unit.  

Video recordings from 14 participants of the 49 
participants were labelled with UPDRS-gait scores by a 
trained annotator. The participants were selected to include a 
range of parkinsonian gait characteristics in this study.  

This dataset was supplemented by additional data collected 
at an independent living facility for older adults. Healthy older 
adults without cognitive impairments were cued to walk at a 
comfortable pace towards and away from stationary cameras 
for a duration of one minute. All participants provided written 
consent for participation in this study. Videos of the 
participants ambulating were recorded by two tripod-mounted 
mobile phone cameras with a resolution of 1080×1920 and 
frequency of 30 Hz. No walks from this dataset were annotated 
with UPDRS-gait scores. 

B. Extraction of Joint Trajectories and Gait Features 

Only videos where participants were continuously and 
independently ambulating towards the camera were selected 

for further analysis. The AlphaPose human pose-estimation 
library (YOLOv3-spp detector, pretrained ResNet-50 
backbone) was used to obtain the x and y locations (in pixels), 
and model confidence scores of 17 joints in each frame of the 
videos. The joint positions were grouped temporally to obtain 
trajectories representing the motion of the participant. Data 
points with an AlphaPose confidence scores less than 0.5 were 
linearly interpolated using data at adjacent time steps. All joint 
trajectories were low-pass filtered with a zero-phase 2nd order 
Butterworth filter with a cut-off frequency of 8 Hz.  

Using the method previously described by Ng et al. in [12], 
footfalls were algorithmically detected in the joint trajectories. 
When more than three footfalls were detected in a walking 
bout, seven gait features (cadence, number of steps, average 
step width, average margin of stability, the coefficient of 
variation of step width and time, and the symmetry index of 
step times) were calculated. A detailed explanation of these 
gait features and how they were calculated is presented in [12]. 
The footfalls were also used to temporally segment parts of the 
sequences in which the participant was actively walking. 
Specifically, only the data between the first and last footfalls 
were extracted and used as input to models for regression to 
UPDRS-gait scores. As a final preprocessing step, these 
skeleton trajectories were centered with the hip pixel 
coordinates (x, y) at a fixed location – set to (100, 100) in the 
experiments – to compensate for varying starting positions of 
the participants in each video. To double the size of the dataset, 
joint trajectories were also mirrored along the vertical axis.  

C. Regression to UPDRS-gait 

Leave-one-subject-out cross-validation (LOSOCV) was 

used to evaluate machine learning models trained to regress 

to UPDRS-gait scores. Model performance was assessed 

using accuracy, macro-averaged F1 score, and mean absolute 

error between labels and predicted scores. The unweighted 

(macro) average across all classes was used as the primary 

performance metric as it is not biased by class imbalance. 

1) Baselines using Gait Features 

As a baseline, regression models that used the seven 

precomputed gait features to predict UPDRS-gait scores were 

investigated. Two models from the Scikit-Learn toolbox 

(linear regression, random forest regression), and two models 

from the Mord package [18] (ordinal logistic regression, 

immediate and absolute threshold variants) were evaluated. 

Using a LOSOCV scheme, hyperparameter tuning was 

performed by holding out all walks from a particular 

participant, and using random search to select the best 

hyperparameters on a validation set. For each participant, 

 
Figure 1. Two-stage training method for ST-GCN models. Note that the inclusion of gait features in Stage 2 is optional. 
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1000 search iterations and 10 cross-validation folds within the 

training set were evaluated for each model and the model with 

the highest validation set macro-averaged F1-score was 

evaluated on the held-out test data from that participant. 

2) ST-GCNs using Skeleton Trajectories 

ST-GCN models that use skeleton trajectories to predict 

UDPRS-gait scores were also explored. The input to these 

models was a 120 timestep (4 second) trajectory of 13 key 

joints for each walking bout. Trajectories that were less than 

120 timesteps long were zero-padded at the beginning of the 

sequence. Longer sequences were randomly sampled to select 

a 120 timestep section during training, while during validation 

and testing, the center 120 timesteps were used as input. 

Keypoints representing the eyes and ears were excluded as 

these were poorly tracked by AlphaPose and assumed to not 

be vital for evaluating gait quality. Inspired by the use of ST-

GCNs for human action recognition by Yan et al. [15], an 

architecture with the same 10-layer ST-GCN backbone was 

investigated in the work. As the size of the dataset available 

for this study is much smaller than those investigated by Yan 

et al., two smaller (4-layer) ST-GCNs were also investigated. 

These two additional models were selected empirically 

through preliminary analyses on 10 potential new (smaller) 

models. The details of the three ST-GCN backbones are 

presented in Table I. Temporal kernel sizes of 5, 9, and 13 

were investigated for each model. 

Self-Supervised Pretraining Stage: The training of ST-

GCN models was performed in two stages, and is summarized 

visually in Fig. 1. To leverage the large number of walks 

without UPDRS-gait labels, a pretraining task that required 

the model to predict future positions of the ankles and wrists 

was introduced. The goal of this self-supervised task was to 

have the underlying ST-GCN model learn general patterns 

related to the kinematics of gait prior to scoring the walk on 

the UPDRS-gait scale. This was achieved by introducing a 

position regression head on top of the ST-GCN backbone. 

This regression head consisted of a single fully connected 

layer with 8 outputs that were used to predict the x and y 

positions of the wrists and ankles 15 frames after the end of 

the input joint trajectory.  

Finetuning Stage: After the pretraining task, the position 

regression head was replaced with a clinical score regression 

head with a single output, and the model was fine-tuned to 

predict the UPDRS-gait score from the input joint trajectories. 

The weights of the ST-GCN backbone for this stage were 

initialized with those obtained from the pretraining task. The 

final score predicted by the model was a continuous value and 

was therefore rounded and clipped to be between zero and the 

highest observed score in the training set. To investigate the 

effect of combining gait features with joint trajectory data, a 

version of the model where the seven precomputed gait 

features were combined at the feature level was also 

investigated. 

Hyperparameter Tuning and Training Details: All ST-

GCN models were implemented in PyTorch and trained with 

a cyclic learning rate. Dropout rates ranging from 0 to 0.5 in 

increments of 0.1 were investigated. In Stage 1 (self- 

TABLE I.  FILTER COUNT FOR THREE ST-GCN BACKBONES 

supervised learning), all walks were used in training and the 

Wing loss between the known and predicted ankle and wrist 

locations 15 frames in the future was minimized. For Stage 2 

(supervised fine-tuning), the mean squared error (MSE) 

before rounding between the predicted and true UPDRS-gait 

scores was minimized. In this stage, only walks with UPDRS-

gait labels were used. 

Early stopping when the validation loss did not decrease for 

25 epochs was used to terminate training. During the 

finetuning stage, only walks with UPDRS-gait labels at the 

extrema of available labels were used for the first 25 epochs 

of training. This curriculum was used to encourage the model 

to first distinguish between healthy and highly impaired gait 

before focusing on the entire range of UPDRS-gait scores.  

During training of ST-GCN models, the data not from the 

participant in the test set were divided into 80/20 training and 

validation sets. Five-fold cross validation was performed.  

III. RESULTS 

Joint trajectories of 2160 walking bouts from 49 

participants at the dementia in-patient unit were successfully 

extracted using AlphaPose. A total of 324 of these bouts from 

14 participants (age: 76.2 ± 8.7 years) were annotated with 

UPDRS-gait scores, and gait features were successfully 

calculated for 321 bouts. The distribution of UPDRS-gait 

scores were: 76 walks with score 0, 101 walks with score 1, 

and 147 walks with score 2. Furthermore, 132 additional joint 

trajectories from 14 participants from the independent living 

facility were obtained using AlphaPose. 

The top performing models using gait features, joint 

trajectories, as well as a combination of both are presented in 

Table II. All models were selected according to highest F1-

score on the validation set. The results for the ST-GCN 

models are presented as the mean and standard deviation 

across the five folds. 

IV. DISCUSSION 

This study compared the use of 2D joint trajectories and 

gait features as input to models for regressing to UPDRS-gait 

scores on a dataset of labelled 324 natural walking bouts from  

14 older adults with dementia. To evaluate performance of the 

models on unseen participants, all walks from the participant 

being evaluated were excluded during training of the model. 

On this challenging dataset and testing methodology, the top-

performing ST-GCN model that used both joint trajectories 

and gait features outperformed the models that only used gait 

features or joint trajectories across all evaluation metrics. 

When comparing models that only used one set of input data, 

the top-performing traditional regression model operating on 

only gait features had a higher accuracy and macro-averaged 

F1-score than the ST-GCN model that was trained on only 

joint trajectories. These results suggest that both gait features 

and joint trajectories capture information related to the  

Model Filter Count per Layer 

Large [64, 64, 64, 64, 128, 128, 128, 256, 256, 256] 

Medium [32, 32, 64, 64] 

Small [16, 16, 32, 32] 
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TABLE II.  TEST ACCURACY, MEAN ABSOLUTE ERROR, AND F1-SCORE 

FOR TOP PERFORMING MODELS 

Input Data Accuracy 
Mean Absolute 

Error (MAE) 

F1-score (Macro-

averaged) 

Gait Features 0.406 0.766 0.333 

Joint Trajectories 0.352 ±0.013 0.712±0.036 0.321±0.013 

Joint Trajectories 
+ Gait Features 

0.411±0.027 0.688±0.008 0.372±0.019 

a. Ordinal Logistic Regression – Immediate Threshold (IT); b. Large ST-GCN, temporal 

kernel = 13, dropout = 0.0; c. Large ST-GCN, temporal kernel = 9, dropout = 0.2 

severity of parkinsonism in gait, but combining the two sets 

of data provides information not captured by either set alone.  

The accuracies of the top performing models were around 

40%. This speaks to the challenging nature of quantifying a 

continuous phenomenon such as parkinsonism on a discrete 

scale. When clinicians score a walk on the UPDRS-gait scale, 

they are often deciding between two adjacent integer scores 

on the scale. However, the final integer score provided by the 

clinician does not capture whether a walk is closer to the top 

or bottom range of symptoms for its assigned score. 

Furthermore, it can also be difficult for clinicians to be 

consistent in their application of the scale [19]. Because there 

is a level of uncertainty in the scores provided by clinicians, 

it is also valuable to consider the performance of the 

regression models when predicted scores that are off only by 

1 are accepted. Using this approach to evaluate the top models 

presented in Table II, the baseline regression model using 

only gait features achieved a test accuracy of 82.8%, the ST-

GCN model using only joint trajectories achieved an accuracy 

of 94.4 ± 2.2%, while the ST-GCN model using both joint 

trajectories and gait features had a test accuracy of 94.2 ± 

1.2%. These results suggest that the regression models are 

generally able to distinguish between normal gait and gait 

with severe parkinsonism, but like clinicians, have more 

difficulty with adjacent scores on the UPDRS-gait scale. 

V. CONCLUSION 

In this study, we have shown that ST-GCN models that use 

both 2D joint trajectories and gait features as input outperform 

ST-GCN models that only operate on joint trajectories or 

baseline regression models that only operate on gait features. 

Regressing to UPDRS-gait scores of parkinsonism severity in 

unseen participants is a difficult task due to the limited 

granularity and non-objective nature of the rating scale, 

however, accuracies of over 94% are possible if predicted 

scores that are only off by 1 are accepted. These findings 

suggest that vision-based systems are feasible way to non-

obtrusively monitor parkinsonism severity in natural gait. 

Future work will explore alternative 2D human pose 

estimation libraries to evaluate the sensitivity of the models 

to small differences in the input data. Additionally, as this 

dataset was recorded using a Microsoft Kinect, 3D joint 

trajectories and gait features can also be extracted and 

compared to the 2D joint trajectories and gait features 

explored in this analysis. This will provide insight into 

whether additional information in the depth dimension is 

beneficial for regressing to UPDRS-gait scores. Another 

avenue to explore in future work is to avoid rounding the 

output of the regression models and instead output continuous 

scores of parkinsonism severity. While additional clinical 

labels or information would be required to perform this 

experiment and evaluate such models, this approach would 

allow for more granular assessment of gait quality. 
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