
  

  

Abstract— Deep learning has shown great potential to 

adaptively learn hidden patterns from high dimensional 

neuroimaging data, so as to extract subtle group differences. 

Motivated by the convolutional neural networks and prototype 

learning, we developed a brain-network-based convolutional 

prototype learning model (BNCPL), which can learn representa-

tions that simultaneously maximize inter-class separation while 

minimize within-class distance. When applying BNCPL to 

distinguish 208 depressive disorders from 210 healthy controls 

using resting-state functional connectivity (FC), we achieved an 

accuracy of 71.0% in multi-site pooling classification (3 sites), 

with 2.4-7.2% accuracy increase compared to 3 traditional 

classifiers and 2 alternative deep neural networks. Saliency map 

was also used to examine the most discriminative FCs learned by 

the model; the prefrontal-subcortical circuits were identified, 

which were also correlated with disease severity and cognitive 

ability. In summary, by integrating convolutional prototype 

learning and saliency map, we improved both the model 

interpretability and classification performance, and found that 

the dysregulation of the functional prefrontal-subcortical circuit 

may play a pivotal role in discriminating depressive disorders 

from healthy controls. 

I. INTRODUCTION 

The current diagnosis of major depressive disorder (MDD) 
often relies on disease history and self-reported symptoms, 
lacking objective and reliable imaging biomarkers, which may 
cause misdiagnosis and inadequate treatment [1]. As a non-
invasive method to investigate brain function with high spatial 
resolution, functional magnetic resonance imaging (fMRI) has 
been widely used to characterize brain networks through 
functional connectivity (FC) among spatially separated brain 
regions, which has shown great promise in unveiling hidden 
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pathological patterns to assist the diagnosis of brain disorders 
using machine learning approaches [2, 3]. 

On one hand, compelling evidence suggests that MDD 
patients exhibit abnormal FC patterns compared to healthy 
controls (HCs) [4]. On the other hand, it is difficult to classify 
MDD from HCs when using a large sample size, though 
appreciable accuracy (76-98%) have been achieved based on 
small sample size ranging from 19-58 MDD patients [2]. For 
example, when classifying 180 MDD from 180 HCs using FC 
features, Sundermann et al. achieved accuracy of 45.0%-56.1% 
with SVM, similar to random probability [5]. To date, most 
existing studies with 80% or higher classification accuracy 
suffered from small homogenous sample size, and mostly 
adopted classic classifiers including Gaussian classifiers and 
support vector machines (SVM) [2]. Considering that MDD 
shows less lesion than schizophrenia or Alzheimer’s disease 
on brain function and structure when compared with HCs, 
therefore, it is quite challenging to classify MDD from HCs 
with high accuracy when using multi-site, heterogeneous, and 
large sample size. 

Recently, deep learning has shown great potential to 
capture subtle hidden patterns from neuroimaging big data to 
differentiate brain disorders from HCs, outperforming 
traditional machine learning methods [6, 7]. Particularly, a 
novel architecture of convolutional neural network was 
proposed to leverage the topological locality of functional 
brain networks (BrainNetCNN) to successfully predict 
cognitive performance by FC with correlation at 0.31 [8]. On 
the other hand, prototype learning, which can be viewed as a 
generative model based on Gaussian assumption, can learn a 
robust representation for each class, which shows remarkable 
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advantages on clustering patterns within the same group while 
distinguishing patterns between different groups [9].  

In this study, based on a valuable, large-scale Chinese Han 
resting-state fMRI dataset, we proposed a brain-network-
based convolutional prototype learning (BNCPL) model for 
MDD classification by combining strengths from both 
prototype learning and BrainnetCNN. We aim to obtain 
compact prototypes for MDD and HCs respectively, and 
achieve higher classification performance by BNCPL model 
compared with 3 traditional classifiers and 2 alternative deep 
neural networks. Saliency map was also combined to identify 
abnormal topological FC features for MDD, which may 
deepen our understanding of the psychopathology of MDD. 

II. MATERIALS AND METHODS 

A. Data and Preprocessing 

208 MDD patients (age: 31.8±10.5; gender: 85M/123F) 

and 210 demographically matched HCs (age: 31.3±10.3; 

gender: 85M/125F) were recruited from three hospitals in 
China. The demographic information and clinical 
characteristics for all subjects were summarized in Table I. 
The written informed consent for each subject was obtained 
according to the relevant ethics committees. The fMRI data 
were collected using 3T scanners at Xinxiang (Siemens, 
Verio), Huaxi (Philips, Achieva), and Anding (Siemens, Trio) 
hospitals. All participants underwent an 8-min fMRI scans 
with the following parameters: repetition time/echo time = 
2000/30 ms; field of view = 220 mm (64 × 64 matrix); 
thickness = 4 mm (3.5 mm at Huaxi hospitals), and were 
instructed to lie still, and keep their eyes closed during 
scanning. The fMRI data were preprocessed based on SPM12 
software [10]. The first 10 volumes for each subject were 
discarded to exclude T1 equilibration effects, and the 
following pipeline included slice timing, motion correction, 
normalization, linear detrend, band-pass filtering (0.01–0.08 
Hz), and spatial smoothing with a 6-mm-FWHM Gaussian 
kernel. Cerebrospinal fluid signal, white matter signal, and 24 
Friston head-motion parameters were also regressed out. 

After data preprocessing (Fig. 1a), FC was calculated by 
Pearson correlation coefficient between averaged time courses 
for each pair of regions based on the Brainnetome atlas 
including cerebellum [11]. To minimize potential confounding 
effects, age, gender, and mean FD were set as covariates to 
regress out from FC features. Additionally, FC were estimated 
using the automated anatomical labeling (AAL) template to 
investigate the impact of different brain parcellation schemes. 

B.  BNCPL 

A deep BNCPL model was developed to seek site-shared 
biomarkers for MDD, consisting of brain-network-based CNN 
and prototype learning (Fig. 1c). The CNN was used to 
automatically extract high-level features from FC for the 
classification of MDD, then followed by a prototype learning 
to build a compact representation for each class. 

1) Brain-network-based convolution neural network 

Brain-network-based CNN was composed of one edge-to-
edge (E2E) layer, one edge-to-node (E2N) layer, one node-to-
graph (N2G) layer, and a fully-connected layer. E2E 
convolutional layer can learn the topological locality by 
combining the weight of edges that shared nodes together via 

a cross shape filter. Given the m-th feature map of a weighted 
FC matrix at the l-th layer of the network, , ,( ; )l m l mG A=  , 
where ,l mA  is the weighted FC matrix, and   is the set of the 
nodes, the E2E convolution for each edge

,i jA at l+1-th layer 
can be represented as (1): 
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Where lM  is the number of weighted FC matrices at the l-th 
layer of the network; 1,l nA +  is the n-th weighted FC matrix at 
the l+1-th layer of the network; , ,

,1

l m n

kw  and , ,

,2

l m n

kw  are the 
learned weight of row and column of the n-th filter 
corresponding to the m-th weighted FC matrix at the l-th layer 
of the network. E2N convolution can learn a representative 
value for each node by combining all weights of edges 
connected to the node. E2N convolution can be denoted as (2): 
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Figure 1. The framework of the brain-network-based convolutional prototype 

learning (BNCPL). (a) Data preprocessing and feature selection. (b) The 

performance of the BNCPL model was evaluated by 10-fold and leave-one-
site-out cross validation. (c) Details of the BNCPL model. The edge-to-edge, 

edge-to-node, node-to-graph, and fully-connected layers were used for 

extracting discriminative features from FC matrix, which were further used 
to build intra-class compact and inter-class separable prototype for each class. 
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TABLE I 
DEMOGRAPHIC AND CLINICAL INFORMATION 

Mean ± SD Healthy Controls Depression P value 

Number 210 208 ― 

Age 31.34 ± 10.29 31.80 ± 10.54 0.65 a 

Gender 

(Male/Female) 
85/125 85/123 0.94 b 

HDRS ― 20.89 ± 6.62 ― 

BDI ― 20.82 ± 6.89 ― 

Duration ― 48.14 ± 65.42 ― 

RVP 84.2 ± 4.52 82.54 ± 4.79 0.046 b 

Verbal Fluency 20.06 ± 5.45 16.87 ± 5.10 8.57 × 10-4 b 

Digit Symbol 59.36 ± 13.59 47.62 ± 14.71 6.97 × 10-6 b 

aTwo-sample t test; bChi-square test; SD, standard deviation; HDRS, 

Hamilton Depression Rating Scale; BDI, Beck Depression Inventory; RVP, 

Rapid Visual Information Processing. 
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Where 1,l n

i

+  is the n-th weight of node i at the l+1-th layer of 
the network. N2G convolutional layer can learn a 
representative value for the input FC matrix by combining all 
weights of nodes in the network, which is represented as (3): 
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Where 
1,gl n+

 is the n-th representative value of the graph by 
combining all node weights at the l-th layer of the network. 
Next, a fully-connected layer was added to the end of the 
BNCPL to obtain a high-level representation for the input FC. 

2) Prototype loss function 

Followed by the brain-network-based CNN, a prototype 
was built for each class with the output features via prototype 
learning, mi for class i, which is a learned prototype center. The 
similarity between the prototype and the given sample was 
measured by the Euclidean distance between them: 

 ( )
2

2
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For K categories, then given a sample (x,y), the probability 
of p(y|x) and the cross-entropy loss based on the Euclidean 
distance (DCE) to the prototype can be denoted as (5): 
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The distinguishing prototype mi for class i can be learned 
by minimizing the DCE loss between the sample and the 
learned prototype. To learn a compact prototype for each class, 
a prototype loss was added as a regularization: 

 ( )( )
2

2
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Where my is the corresponding prototype with f(x), λ is a 
hyperparameter to control the weight of the prototype loss. For 
the loss function, combining the DCE and prototype loss, we 
can obtain inter-class separable representations and intra-class 
compact representation for each class. 

3) BNCPL model implementation 

The BNCPL network was finally constructed with an E2E 
layer with 96 1 × 273, and 96 273 × 1 filters producing an 
output of size 273 × 273 × 96, an E2N layer with 96 1 × 273 × 
96 filters producing an output of size 273 × 1 × 96, an N2G 
layer with 400 273 × 1 × 96 filters producing an output of size 
1 × 400, then followed by a fully-connected layer with two 
hidden layer nodes producing an output of size 2. Finally, two 
prototype centers were built with the output features for MDD 
and HCs respectively. 

For the BNCPL model, the learning rate was initialized to 
0.0015, then decayed after 15 epochs with a decay rate of 0.5. 
The training batch size was set as 20. The activation function 
for each hidden layer node was the leaky rectified linear unit 
with a leaky value of 0.2. To improve the generalization 
performance of the model, the model parameters were 
regulated by dropout (dropout = 0.5), L1, and L2-norm 
regularization (L1 = 0.0005, L2 = 0.0005). The model was 
optimized by minimizing the loss function with Adam 
optimizer. The training process was stopped until the training 
loss decreased by less than 0.001 for 5 epochs, or the training 
epoch reached the maximum number of the iteration (100 

epochs), and the intermediate model with the highest accuracy 
on the validation dataset was retained for testing. The proposed 
model was implemented via Pytorch (https://pytorch.org/) and 
ScikitLearn (https://scikitlearn.org/). 

Two strategies were adopted to evaluate the model, 
including 10-fold and leave-one-site-out cross validation, in 
which 10% samples of the training set were randomly selected 
as validation set (Fig. 1b). We then compared the performance 
of the proposed BNCPL model with traditional classifiers, 
including SVM, Adaboost, Random Forest, and deep neural 
network (DNN) [6]. For traditional classifiers, FC matrix was 
reshaped into a vector and then used as input to the model. To 
further examine the effectiveness of the prototype learning, the 
loss function followed by the brain-network-based CNN was 
replaced with the traditional softmax, called BrainNetCNN. 
The performance of the model was measured with accuracy 
(ACC), sensitivity (SEN), specificity (SPE), F-score (F1), and 
area under curve (AUC). All experiments were repeated ten 
times to generate the means and standards of the above metrics, 
and the performance of different classifiers was compared 
using the two-sample t-test. Additionally, to test the effect of 
different brain parcellation, we also test the performance of the 
BNCPL model by using AAL atlas. 

4) Estimating the discriminative power of FC 

To uncover the reliable imaging biomarkers for the 
classification of MDD, we used Simonyan’s method [12], 
which highlights the most discriminative regions by saliency 
map with respect to the given class. For all FC features, the 
absolute value of weight matrices derived from the saliency 
map was averaged across entire datasets for ten times. Then 

the top 1‰  FC with the largest weight were retained, 

indicating the most discriminative connectivity for MDD. The 
node weight was denoted as the sum of the weight of the 
relevant connectivity to represent the contribution to the 
classification of MDD. The brain regions were divided into 
nine functional networks for visualization according to Yeo’s 
network [13], including visual (VSN), somatomotor (SMN), 
ventral attention (VAN), dorsal attention (DAN), 
frontoparietal (FPN), limbic (Lim), and default mode networks 
(DMN). Additionally, subcortical (SCN) and cerebellum 
networks (CBN) were also included. Correlation analysis was 
further performed to explore the relationship between the most 
discriminative FC and clinical symptoms. 

III. RESULTS 

A. Compact representation for each class 

For the BNCPL model, the prototype loss function was 
used to control the compactness for each class. The 
performance of BNCPL was compared with different λ, which 
was set as 0, 0.001, 0.0001, 0.00001 respectively. Results 
suggested that the representation of each class became more 
compact with bigger λ, as the dimension of the extracted 
feature space getting smaller (Fig. 2a). The average accuracy 
of the BNCPL model with λ as 0, 0.001, 0.0001, 0.00001 was 
69.9 ± 1.1%, 69.6 ± 1.0%, 71.0 ± 1.3%, and 70.5 ± 1.1% 
respectively. In order to balance the classification performance 
and the compactness of the prototype, the lambda was 
determined as 0.0001 for further analysis. 
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B. Classification performance 

For ten-fold cross validation, the BNCPL model achieved 
an average accuracy of 71.0 ± 1.3%, which was significantly 
higher than traditional classifiers, DNN, and BrainNetCNN (p 
< 0.001, two-sample t-test), whose accuracy ranged from 63.8 
± 1.3% to 68.6 ± 1.0%. The BNCPL model also outperformed 
in SEN, SPE, F1, and AUC metrics than other classifiers 
(Table II and Fig. 2b). For leave-one-site-out classification, 
the BNCPL model achieved an average accuracy of 66.4 ± 
3.9%, which was higher than traditional classifiers, DNN, and 
BrainNetCNN (Table III and Fig. 2b), whose accuracy 
ranged from 59.4 ± 2.9% to 63.3 ± 3.4%. Additionally, the 
accuracy of AAL template was 66.7 ± 0.8% by the BNCPL 
model in ten-fold cross validation, which was lower than the 
Brainnetome atlas, suggesting that finer parcellation of brain 
regions may contribute to the classification of MDD. 

C. Estimating the most discriminating FC features 

The most discriminating FC in the classification was 
analyzed based on the nine-network parcellations. Results 
demonstrated that the most discriminative regions primarily 
included right amygdala, bilateral basal ganglia, right 
thalamus, and right hippocampus within the SCN, left orbital 
gyrus (OrG), and left anterior cingulate gyrus within the DMN, 
bilateral dorsal lateral prefrontal gyrus (dlPFC), and right 
inferior parietal lobule within the FPN, parahippocampal gyrus 

and inferior temporal gyrus within the Lim (Fig. 3a). Among 
all regions, the amygdala, OrG, and dlPFC exhibited the 
greatest region weights. Especially for the amygdala, results 
showed that three FCs connected to the amygdala showed 
significant group difference and were also associated with 
symptom severity and cognitive ability (Fig. 4), including 
decreased FC between Amyg_212 and OrG_51 (p = 5.9×10-3, 
FDR corrected), and FC between Amyg_212 and OrG_43 (p 
= 3.4×10-2, FDR corrected), increased FC between Amyg_212 
and dlPFC_16 (p = 2.8×10-4, FDR corrected) in MDD patients. 

For the most discriminating FCs, nearly three quarters of 
the FC (55/75) showed significant group difference (p < 0.05, 
FDR corrected, Fig. 3b). It was obvious that most contributed 
FCs were mainly located in FPN, SCN, and DMN with the 
largest number of discriminating FC and the biggest node 
weights (Fig. 3a/d). The most discriminating FC was further 
divided into intra- and inter-network groups. Results showed 
that the most discriminating inter-network FCs were mainly 
found between SCN and FPN, and between SCN and DMN, 

 
Figure 3. The most discriminating brain regions and functional connectivity 
(FC) in depression. (A) The most discriminating brain regions for depression 

(left) and node weights displayed in nine networks (right), in which node size 

denotes node weight. (B) The most discriminating FC with significant group 
difference. Red lines denote increased FC while blue lines denote decreased 

FC in depression. (C) The percentage weight distribution of intra- and inter-

network FC. (D) The most discriminating FC displayed in nine networks. Red 
lines denote increased FC while black lines denote decreased FC in depression. 

OrG, orbital gyrus; Amyg, amygdala; dlPFC, dorsal lateral prefrontal cortex. 
TABLE III 

THE PERFORMANCE OF LEAVE-ONE-SITE-OUT CLASSIFICATION 

Methods ACC (%) SEN (%) SPE (%) F1 (%) AUC (%) 

Random Forest 54.9 ± 3.0 55.8 ± 6.2 53.9 ± 4.2 54.8 ± 3.0 55.1 ± 5.2 

AdaBoost 52.4 ± 3.4 55.8 ± 2.8 49.0 ± 4.5 52.3 ± 3.4 54.5 ± 2.0 

DNN 61.1 ± 4.0 57.8 ± 3.4 64.4 ± 5.5  61.1 ± 4.0 65.9 ± 5.9 

SVM 61.6 ± 2.9 59.6 ± 1.9 63.5 ± 5.5 61.6 ± 2.9 66.6 ± 5.4 

BrainNetCNN 63.3 ± 3.4 59.3 ± 2.8 67.2 ± 5.6 63.2 ± 3.3 66.9 ± 5.7 

BNCPL 66.4 ± 3.9  60.1 ± 1.1 72.5 ± 7.3 66.2 ± 3.8 70.5 ± 4.5 

 

TABLE II  

THE PERFORMANCE OF MULTI-SITE POOLING CLASSIFICATION  

Methods ACC (%) SEN (%) SPE (%) F1 (%) AUC (%) 

Random Forest 54.1 ± 1.7 54.0 ± 2.9 54.2 ± 2.2 54.1 ± 1.7 54.8 ± 2.0 

AdaBoost 58.7 ± 1.5 58.7 ± 2.0 58.7 ± 2.5 58.7 ± 1.5 61.9 ± 2.1 

DNN 68.0 ± 1.0 66.2 ± 2.3 69.8 ± 1.0  68.0 ± 1.0 73.3 ± 1.2 

SVM 68.5 ± 1.4 68.2 ± 1.4 68.7 ± 2.1 68.5 ± 1.4 75.5 ± 1.2 

BrainNetCNN 68.6 ± 1.0 67.8 ± 2.7 69.5 ± 2.3 68.6 ± 1.0 74.5 ± 0.7 

BNCPL 71.0 ± 1.3  68.9 ± 2.8 73.1 ± 3.2 71.0 ± 1.3 76.7 ± 0.6 

 

 
Figure 2. The classification performance of the BNCPL model. (a) The 

compactness and separability of prototypes with different λ for depression and 

healthy controls, in which λ is a hyper-parameter that controls the intra-class 
compactness. (b) The comparison of classification performance in multisite 

pooling and leave-one-site-out classification. * p < 0.05, ** p < 0.001. 

 
Figure 4. Correlations between amygdala-prefrontal connectivity and the 
severity of depression (A), and cognitive performance (B). 

1625



  

and no significant intra-network FC were observed (Fig. 3c). 
A significant observation was prefrontal-subcortical circuit, as 
there were more than two-thirds (23/35) prefrontal-subcortical 
FCs of connections related to SCN. Summing up, the most 
discriminating regions were mainly found within SCN, DMN, 
and FPN, especially the prefrontal-subcortical circuit. 

IV. DISCUSSION 

Here we proposed a novel BNCPL model to differentiate 
depression from HCs, which enabled feature extraction and 
prototypes being learned jointly from the FC features. By 
integrating the topological property of brain networks and 
prototype learning, BNCPL can effectively learn an intra-class 
compact and inter-class separable representation for each class, 
instead of just learning a discriminative plane. MDD 
classification showed that the BNCPL model achieved a 
significantly improved classification accuracy in both multi-
site pooling (>2.4%-7.2%), and leave-one-site-out prediction 
(>3.1%-7.0%), suggesting great promise in searching potential 
neuroimaging biomarkers for MDD. Furthermore, based on 
the saliency map, we revealed that the most discriminating FCs 
were primarily related with FPN, DMN, and SCN. Specifically, 
FPN is involved in goal-directed control of attention, emotion, 
and self-referential thought [14], and aberrant FCs in FPN 
were also reported in a meta-analysis for MDD [15]. SCN is 
engaged in emotional stimulation and mood-congruent 
processing [16], especially the amygdala, which is implicated 
in event-related emotional experience and encoding of the 
emotion intensity [17]. The dysfunctional connectivity related 
with DMN, especially OrG and anterior cingulate gyrus, was 
also observed in the most discriminating FCs for MDD, 
consistent with previous studies [18]. To summarize (Fig. 3), 
FCs linking prefrontal-subcortical regions exhibited much 
higher weights in MDD classification, suggesting that 
prefrontal-subcortical pathways play a mediating role in 
emotion regulation [15, 18]. Coincidently, the prefrontal 
cortex was also reported to play a crucial role in the top-down 
regulation of subcortical affective circuitry [19]. 

V. CONCLUSION 

To the best of our knowledge, this study is the first attempt 
to transplant convolutional prototype learning to neuro-
imaging classifications. The proposed BNCPL model is able 
to effectively learn an intra-class compact and inter-class 
separable representation, revealing the class-specific 
clustering patterns for HC and MDD. Consequently, a 
significantly improved performance was achieved for MDD 
classification, indicating the advantage of integrating the 
topological property of brain network and prototype learning. 
More importantly, the use of saliency map suggested that the 
most discriminative FC features were primarily located in 
SCN, DMN, and FPN, mostly in the prefrontal-subcortical 
circuit, which may shed new insight on understanding 
pathological mechanisms of depression, demonstrating great 
promise to identify potential imaging biomarkers for brain 
disorders with advanced deep learning techniques. 
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