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Abstract— Abdominal aortic aneurysms (AAAs) are balloon-

like dilations in the descending aorta associated with high 

mortality rates. Between 2009 and 2019, reported ruptured 

AAAs resulted in ~28,000 deaths while reported unruptured 

AAAs led to ~15,000 deaths. Automating identification of the 

presence, 3D geometric structure, and precise location of AAAs 

can inform clinical risk of AAA rupture and timely 

interventions. We investigate the feasibility of automatic 

segmentation of AAAs, inclusive of the aorta, aneurysm sac, 

intra-luminal thrombus, and surrounding calcifications, using 

30 patient-specific computed tomography angiograms (CTAs). 

Binary masks of the AAA and their corresponding CTA images 

were used to train and test a 3D U-Net - a convolutional neural 

network (CNN) - model to automate AAA detection. We also 

studied model-specific convergence and overall segmentation 

accuracy via a loss-function developed based on the Dice 

Similarity Coefficient (DSC) for overlap between the predicted 

and actual segmentation masks. Further, we determined 

optimum probability thresholds (OPTs) for voxel-level 

probability outputs of a given model to optimize the DSC in our 

training set, and utilized 3D volume rendering with the 

visualization tool kit (VTK) to validate the same and inform the 

parameter optimization exercise. We examined model-specific 

consistency with regard to improving accuracy by training the 

CNN with incrementally increasing training samples and 

examining trends in DSC and corresponding OPTs that 

determine AAA segmentations. Our final trained models 

consistently produced automatic segmentations that were 

visually accurate with train and test set losses in inference 

converging as our training sample size increased. Transfer 

learning led to improvements in DSC loss in inference, with the 

median OPT of both the training segmentations and testing 

segmentations approaching 0.5, as more training samples were 

utilized.  

I. INTRODUCTION 

Abdominal aortic aneurysms (AAAs) are balloon-like 

dilations in the descending aorta associated with high 

mortality rates. AAAs can result in death due to dissections or 

ruptures involving blood leaking between artery walls or a 

portion of the artery itself bursting [1]. In the United States, 

between 2009 and 2019, ~28,000 people died from  reported 

ruptured AAAs while ~15,000 people died from reported 

unruptured AAAs [2]. Due to the high mortality rate of 

ruptured AAAs, better characterization of AAA structure is 

needed. The first step in this process is accurate 3D 

segmentation of medical images which can be difficult for 

image processing pipelines involving region-growing 

annotation techniques underpinned on parametric curve 

evolution.  

Medical image segmentation requires manual effort from 

clinical staff, familiarity with segmentation software, and is 

                                                           
1 Department of Bioengineering, University of Pittsburgh; 2 Department 

of Mechanical Engineering, University of Texas at San Antonio 

time consuming. We propose a convolutional neural network 

(CNN) based machine learning approach of adopting a 3D U-

Net architecture to classify voxel-wise probabilities of a given 

voxel belonging to a vascular region that associates with an 

AAA [3]. Our goal is to segment the AAA structures 

accurately and consistently from computed tomography 

angiograms (CTAs) in a fraction of the time that it takes using 

manual approaches or traditional segmentation pipelines. 

Automatic segmentation allows for rapid determination of the 

presence of AAAs. Further, segmentation identifies the AAA 

structure and geometry to inform decisions on clinical care, 

especially those regarding elective surgery.  

The U-Net we implemented has demonstrated differences 

from past machine learning approaches for segmentation. 

López-Linares et al. [4] reported a CNN capable of 

segmenting AAA intraluminal thrombus (ILT). Another CNN 

pipeline generated automatic segmentations of 2D aorta 

images for concatenation into a 3D aorta structure [5]. 

However, our U-Net segments not only the ILT but the entire 

AAA structure, inclusive of the aorta, in 3D. We selected a 

3D architecture because 3D models can learn more organized 

and precise patterns in volumetric data than their 2D or 2.5D 

counterparts [6]. Furthermore, our training approach offers a 

different perspective on AAA segmentation. A prior 3D U-

Net study explored the segmentation of AAAs using cropped 

CTAs, inclusive of only the AAA itself, to compare its 

accuracy with that of the original U-Net [7]. However, our 3D 

U-Net was trained on a CTA dataset, inclusive of varying 

regions of the body, not just the AAA region of interest. Thus, 

we evaluated our CNN for identification performance more 

comparable in a clinical setting in which CTA acquisition 

methods vary. We hypothesized that our trained CNN’s 

segmentation performance would improve as the number of 

training masks increased, indicating consistency in learning. 

II. METHODS 

A. Imaging Dataset 

30 patient-specific AAAs were manually segmented from 

CTAs using ITK-SNAP’s 3D geodesic active contour 

segmentation module, applying corrections where needed [8]. 

The descending aorta, aneurysm sac, ILT, and calcifications 

(if present) of each AAA were segmented separately at first 

and later merged into 30 single, unified binary masks using 

an interactive voxel labeling method in ParaView (Kitware 

Inc.) [9]. The volumes, in cubic millimeters, of each 

segmentation feature were analyzed descriptively for 

relationships between aneurysm, ILT, and calcification 

volumes. The patients were separated into elective surgery 

and non-elective surgery groups to stratify rupture risk 
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consistent with clinical decisions for repair. AAAs requiring 

elective surgery were assumed to have an elevated rupture 

risk compared to the non-elective surgery group. Non-elective 

surgery patients were considered as not having an anticipated 

need for surgery. Aneurysm, ILT, and calcification volumes 

were compared between groups.  

B. U-Net based AAA Segmentation 

The CTAs were of size 512x512xdim(z) where dim(z) 

was a patient specific length ranging from ~ 100-1000. AAA 

binary masks and CTAs were down sampled to 64x64x64 

voxels using a SimpleITK image resampling pipeline. B-

spline interpolation was adopted for CTAs whereas nearest-

neighbor interpolation was adopted for masks [10].  We fit 

separate models using 10, 15, and 20 AAA binary masks and 

their respective CTAs (leaving the remaining CTAs in each 

case for out-of-sample testing). We ran each fitting exercise 

for 300 and 400 epochs and saved the resulting fit models. Six 

unique models differing in number of training samples and 

epochs run were developed to produce thirty automatic 

segmentations of each patient-specific AAA (including 

training and testing sets). The trained models predicted a 

voxel-level probability of belonging to the foreground mask, 

as defined by our training masks (viz. descending aorta and 

AAA sac, including ILT and calcification regions), in 3D.  

We adopted Pytorch for our CNN design and instance 

normalization (as an alternative to batch normalization) to 

account for small batch sizes. The leaky rectified linear unit 

(LeakyReLU) activation function was used as an adaption to 

the original U-Net (which employed ReLU activation) [3]. 

The CNN consists of a contracting path (left side) and an 

expansive path (right side). The contracting path follows the 

typical architecture of a CNN but culminates in a bottleneck 

layer (viz. a feature map / space) before expanding back into 

a mask image that is identical in size to the input to the 

contracting path. As such, the expansive path facilitates 

upsampling of the feature map. To assess the models’ 

accuracy, the Dice Similarity Coefficient (DSC) score was 

computed for each of the models’ automatic segmentations. 

The DSC was calculated according to Eq. (1), 

DSC = 2 · (Y ∩ P) / (Y + P)      … (1)  

where Y is the ground truth and P is the prediction. A higher 

DSC indicates a more accurate segmentation whereas we 

implemented a loss-function based on the DSC (i.e. 1 - DSC) 

that was iteratively minimized to fit the U-Net. 

The U-Net’s optimum probability thresholds (OPTs) for 

automatic segmentation were refined by colormap 

thresholding in ParaView, in lieu of receiver-operator-

characteristic analysis [9]. Each voxel in the automatic 

segmentation was assigned a probability based on the 

likelihood it represented the AAA structure pursuant to neural 

inference using each of our 6 trained segmentation models. 

Determined by visual inspection, the model-specific  

probability threshold which created the most complete AAA 

representations in our testing set was defined as the OPT. 

C. Determining Consistency with Transfer Learning 

To assess the trained CNN’s segmentation performance as 

the number of training samples increased, the model trained 

for 400 epochs with 15 binary masks was selected for transfer 

learning. This particular model was chosen owing to the 

consistency for binarizing voxel-level probability maps, 

indicated by its interquartile range of OPTs in training and 

corresponding testing sets. Transfer learning involves 

adapting the model’s pre-trained weights by introducing new 

samples. The U-Net was trained on 5 new masks for 400 

epochs followed by 5 new masks for another 400 epochs.  The 

two resulting models, Dice Losses, OPTs, and automatic  

segmentations were collected. 

III. RESULTS 

A. Imaging Dataset 

ILT volume was observed to increase as aneurysm sac 

volume increased (adjusted r2 = 0.16; p = 0.02). Calcification 

volume was found to increase with ILT volume (p < 0.01; 

adjusted r2 = 0.39).  The elective surgery group had a heavy 

right tailed distribution of aneurysm volume vis-a-vis the non- 

surgery group with similar heavy-tailed distributions in ILT  

and calcification volumes. 

B. U-Net based AAA Segmentation 

 

Figure 1. a) Box plots of Dice Losses (1 – DSC from Eq. (1)) from model-

specific inference using each of the 6 trained U-Nets. Letters A, B, and C 

denote models that emerged from 10, 15 and 20 AAA based training runs, 

respectively, whereas X and Y denote the models that were trained for 300 

and 400 epochs, respectively; b). Box plots of optimum probability thresholds 

for automatic segmentation using each of the 6 trained models. Dice Losses 

and OPTs per model reported above consist of both training and testing sets.  
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Figure 2. a) Box plots of Dice Losses (1 – DSC from Eq. (1)) of training and 
testing segmentations produced by the BY model. BY refers to the model 
trained with 15 binary masks for 400 epochs; b) Box plots of the optimum 
probability thresholds for the training and testing segmentations produced by 
the BY model.  

The CNN models trained with 10, 15, and 20 masks for 
300 epochs produced respective median Dice Losses of 0.72, 
0.50, and 0.30. The CNN models trained with 10, 15, and 20 
masks for 400 epochs produced respective median Dice 
Losses of 0.70, 0.47, and 0.30. Dice Loss decreased as the 
number of training masks increased from 10 to 20 masks. 
Dice Loss remained fairly constant as the number of epochs 
run increased from 300 to 400 epochs (Figure 1a). The CNN 
models trained with 10, 15, and 20 masks for 300 epochs 
produced respective median OPTs of 0.29, 0.30, and 0.70. 
The CNN models trained with 10, 15, and 20 masks for 400 
epochs produced respective median OPTs of 0.30, 0.23, and 
0.55. The OPT increased as the number of training masks 
increased from 10 to 20 masks, approaching 0.5 for 400 
epochs run (Figure 1b).  

The BY model which was trained with 15 masks for 400 
epochs achieved a median Dice Loss of 0.12 for its training 
set and 0.74 for its testing set (Figure 2a). The median Dice 
Losses for the training sets were significantly lower than those 
for the testing sets in all six of the models generated. The same 
BY model achieved a median OPT of 0.2 for its training set 
and 0.25 for its testing set with a complete interquartile range 
overlap (Figure 2b). This overlap was the most consistent 
amongst all models fitted, when comparing training and 
testing set-specific OPTs.  

 

Figure 3. a) Manual Binary Segmentation; b) Binary Testing Mask; 
Automatic Segmentation from c) AX; d) BX; e) CX; f) AY; g) BY; h) CY. 
A, B, and C refer to the models trained on 10, 15, 20 binary masks, 
respectively. X and Y refer to the models trained for 300 and 400 epochs, 
respectively. This patient specific AAA was part of the testing set for all six 
models. Visualization was accomplished in ParaView [8].  

Upon visual inspection, AAA automatic segmentations 
were similar to the corresponding manual segmentation 
(Figure 3). However, some automatic segmentations 
contained artifacts that could not be removed by increasing or 
decreasing the OPT.  

C. Determining Consistency with Transfer Learning 

Model BY, the model trained with 15 samples for 400 

epochs, was chosen to determine the impact of new data 

introduced by transfer learning. Segmentation performance 

was assessed by Dice Loss and optimal thresholding of voxel-

level probabilities.  

 

Figure 4. a) Box plots of the Dice Losses (1 – DSC from Eq. (1)) for the 
transfer learning trained models (testing and training sets). BY refers to the 
model trained with 15 binary masks for 400 epochs. BY+5 refers to the pre-
weighted BY model trained for an additional 5 binary masks, 400 epochs. 
BY+10 refers to the pre-weighted BY+5 model trained for an additional 5 
binary masks, 400 epochs. b) Box plots of the optimum probability thresholds 
for the transfer learning trained models (testing and training sets).  

The CNN model trained with 15, 20, and 25 masks for 400 
epochs produced respective median Dice Losses of 0.12, 0.20, 
and 0.31 for its training set and 0.74, 0.75, 0.75 for its testing 
set. Dice Loss increases for the training set and remains 
consistent for the testing set as the number of training masks 
increases (Figure 4a). The CNN model trained with 15, 20, 
and 25 binary masks for 400 epochs produced respective 
median OPTs of 0.20, 0.33, 0.45 for the training set and 0.25, 
0.40, 0.40 for the testing set. The median OPT increases as 
the number of training masks increases for both training and 
testing sets (Figure 4b). 

IV. DISCUSSION 

A. Imaging Dataset 

Using  = 0.05 for statistical significance, aneurysm 

volume was found to be proportionate to ILT volume as was 

ILT volume to calcification volume. The relationship between 

aneurysm and ILT volume is supported with literature 

implying that high volume aneurysms are associated with 

large amounts of ILT [11]. The non-elective surgery group 

had aneurysm sac, ILT, and calcification volumes that 

followed a normal distribution, while the same quantities for 

the elective surgery group had a heavy right tailed 

distribution. This positive skew of volumes quantified in the 

elective surgery group is consistent with the notion that larger 

AAAs are more likely to be electively repaired. Descriptive 

characteristics of our dataset are consistent with AAA 

literature. A 2011 review indicated AAA size correlated with 

risk of AAA rupture [12]. Our assessment is further 

substantiated with evidence that ILT volume is greater in 

ruptured AAAs compared to unruptured AAAs [13]. Buijs et 

al. [14] claimed calcification is more prevalent in patients 

with ruptured AAAs than those who took preventative 

measures, which is consistent with our outcomes. 
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B. U-Net based AAA Segmentation 

Increasing the number of binary masks provided for CNN 

training had a greater impact in reducing Dice Loss and 

increasing OPT as compared to the impact of increasing 

epochs run (Figure 1). The training of more robust U-Nets 

was correlated with increasing the number of samples. While 

the difference between the BY model’s median Dice Loss 

between testing and training sets was 0.62, the BY model’s 

OPT interquartile ranges overlapped for the training and 

testing sets suggesting that the BY model, which was trained 

with 15 masks for 400 epochs, was the most robust U-Net 

produced (Figure 2). The high Dice Loss of the testing set 

remained an issue in our models, nevertheless, the similarity 

in train v/s test OPT suggests consistency in performance. A 

marginal visual improvement in AAA structure was achieved 

because of model inference, when a greater number of 

samples was used for training (Figure 3). Nevertheless, some 

automatic segmentations still included artifacts that could not 

be removed by thresholding.  

C. Determining Consistency with Transfer Learning 

As the pre-trained BY model, which was previously 

trained with 15 masks for 400 epochs, was trained with an 

increasing number of samples at a constant 400 epochs, the 

median Dice Loss and its interquartile range of the training 

set increased to approach that of its testing set (Figure 4a). 

However, the models improved consistently with additional 

training data because the difference between the median Dice 

Loss of the training set and testing set reduced as the number 

of training images increased (Figure 4b). Further, as the pre-

trained model was trained with additional binary masks, the 

OPT increased over the three trials runs, approaching 0.5.  

D. Improvements 

The U-Net model could improve its segmentation 

performance by training on varying binary masks and CTAs. 

Most binary masks and CTAs used for training were from an 

elective surgery group and most non-elective surgery binary 

masks formed the testing group. Therefore, our CNN may 

have overfitted for the elective surgery group. The elective 

surgery group had larger aneurysms, more ILT, and more 

surrounding calcifications than the non-elective surgery 

group, which is supported by AAA literature. To confirm the 

CNN did not overfit based on increased rupture risk AAAs, 

selecting masks in equal proportions from both elective 

surgery and non-elective surgery may improve the model’s 

performance by having equal subgroups within the training 

and testing sets. To increase the number of training and testing 

samples while keeping the number of patient specific AAAs 

constant, data augmentation could be performed on the CTAs 

and their corresponding binary masks. These transformations 

could include rotating, flipping, and shifting the binary masks 

and their respective CTAs. The increase in training masks 

may decrease the Dice Loss and will increase the OPTs of our 

U-Net’s segmentations. Another area of improvement would 

be obtaining the OPTs programmatically. Implementing a K-

means or Otsu’s thresholding algorithm could reduce the time 

required for manually determining thresholds and improve 

inter-reader reliability [15].  

V. CONCLUSIONS 

We demonstrate the feasibility of a 3D U-Net which 

automatically segments AAAs to accelerate clinical decision 

making regarding elective repairs and biomedical research 

based on patient-specific geometric characteristics. While the 

performance of our 3D U-Net can improve by increasing 

binary training masks, our pre-trained models segmented 

AAAs in out-of-sample CTAs with visual accuracy.  
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