
  

  

Abstract—Cross-frequency coupling of neural oscillation is 

widespread during the complex cognitive process. Therefore, 

identifying cross-frequency information flow is essential for 

revealing neural dynamics mechanisms in the brain network. A 

current method based on the information theory, phase transfer 

entropy (PTE), has been proved its effectiveness in estimating 

directional coupling in several recent studies. However, there 

remains some limits in PTE: (1)lack of multivariable effect, (2) 

poor robustness, (3)curse of dimensionality in the high 

dimensional system. This study introduced a novel multivariate 

phase transfer entropy method named “MPTENUE” to solve the 

above issues. In MPTENUE, it considered the influence of 

remaining confounding variables, which guaranteed its 

applicability in a multivariable system. Meanwhile, a 

nonuniform embedding (NUE) approach for state 

reconstruction was adopted to eliminate the dimensional curse 

problem. We performed a series of numerical simulations based 

on the typical Hénon map model. The results proved that the 

MPTENUE achieved better noise robustness and effectively 

avoided the curse of dimension; meanwhile, the accuracy and 

sensitivity can reach 96.9% and 99.2%, respectively.   

I. INTRODUCTION 

As a functionally differentiated complex system, the human 
brain network shows a typical causal coupling and constitutes 
a specific directional information flow, which is expected to 
further illuminate the potential cerebral activity mechanism 
more accurately and comprehensively. Recent studies have 
proved that neuronal oscillations of distinct frequencies 
interact with one another and are associated with functional 
activities such as communication, computation and 
thinking[1],[2]. Therefore, quantifying cross-frequency 
directed coupling is significant in characterising directional 
couplers between neuronal oscillations and revealing neural 
dynamics mechanisms in the brain network. 

The two most commonly used methods to estimate the 
directed coupling are Granger causality modelling  (GCM) and 
dynamic causal modelling (DCM). However, these methods 
faced the following limits: GCM cannot transcribe nonlinear 
cause-effect relationships without compromising GCM 
scalability; it may also identify spurious connectivity or even 
estimate incorrect feedback relations on account of missing 
relevant information. DCM is a model-driven approach that 
relies on prior knowledge and needs to consider a dynamic 
response process to build a better model. As a model-driven 
approach, it is difficult to build an optimal model. Recently, 
the phase transfer entropy (PTE) method has attracted wide 
attention among neuroscientists. When dealing with linear and 
nonlinear time-series coupling, the PTE has experimentally 
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proved its superiority in accuracy, robustness, and stability[3]–
[5]. However, there remain some limits in PTE. Information 
flow estimation by PTE required a great deal of data, 
adjustment of parameters and became vulnerable in the 
presence of environmental noise, physiological noise. 
Moreover, the traditional PTE method is a bivariate method; it 
only evaluates the directed coupling between two isolated 
phase time-series, while detected neural signals usually 
include multiple time-series. The causal coupling between any 
two series is affected by other series; therefore, it is necessary 
to consider this effect. Another multivariate phase transfer 
entropy (MPTE) was proposed to extend traditional PTE; 
regrettably, MTE leads to the “curse of dimensionality”, which 
will affect the reliability of directed information flow[6], [7].  

In this study, a modified PTE method named “MPTENUE” 
was proposed to make it more suitable for analysing 
neurophysiological signals. We extended the traditional 
bivariate PTE by considering the effects of remaining 
confounding variables when calculating the causal 
relationship between the two variables. Moreover, we adopted 
the nonuniform embedding (NUE) method to solve the curse 
of dimension[8]. We carried out a series of numerical 
simulations to verify the performances of MPTENUE and 
compared them with the traditional PTE. This paper is 
structured as follows. The theory of the proposed method is 
detailed in Section II. The numerical simulation results are 
provided in Section III. The discussion and conclusion are 
summarised in Section IV. 

II. PROPOSED METHOD 

A. Related phase transfer entropy 

The phase transfer entropy (PTE) for neurophysiological 
signal analysis was first proposed by Lobier et, al. in 2014[5]. 
It is a typical bivariate causality estimation based on the 
following principle: suppose there are two sequences, namely 
driving sequence 𝑋(𝑡) and target sequence 𝑌(𝑡) respectively, 
if  𝑋(𝑡)  has a causal effect on 𝑌(𝑡) , the uncertainty of the 
present of 𝑌(𝑡) conditioned on its own past 𝑌(𝑡 − 𝛿) should 
be greater than the uncertainty of the present of 
𝑌(𝑡) conditioned on the signals of both past 𝑋(𝑡 − 𝛿)  and 
𝑌(𝑡 − 𝛿). In this PTE algorithm, the Shannon entropy was 
adopted to measure the uncertainty of the sequence 𝑋(𝑡) . 
Firstly, for a series 𝑋(𝑡) in a given frequency band, its phase 
time-series 𝜃(𝑡) can be obtained by Hilbert transform:  

 𝑋(𝑡) = 𝐴(𝑡)𝑒𝑖𝜃(𝑡) (1) 
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where 𝐴(𝑡) is the instantaneous amplitude of 𝑋(𝑡). For 𝑋(𝑡) 

and 𝑌(𝑡), the corresponding phase time-series are 𝜃𝑋(t) and 

𝜃𝑌(t), so the PTE from 𝑋(𝑡) to 𝑌(𝑡) is defined as: 

PTE𝑋→𝑌 = 𝐻(𝜃𝑌(𝑡), 𝜃𝑌(𝑡 − 𝛿)) + 𝐻(𝜃𝑌(𝑡 − 𝛿), 𝜃𝑋(𝑡 −

𝛿)) − 𝐻(𝜃𝑌(𝑡 − 𝛿)) − 𝐻(𝜃𝑌(𝑡), 𝜃𝑌(𝑡 − 𝛿), 𝜃𝑋(𝑡 − 𝛿)) (2) 

where 𝐻(∙)is marginal Shannon entropy: 

𝐻(𝑋) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔(𝑝(𝑥))𝑥∈𝑋 . 𝐻(𝑋, 𝑌)  is the joint 

Shannon entropy, 𝐻(𝑋, 𝑌) = − ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (𝑝(𝑥, 𝑦) . And 

𝑝(∙) is the probability description.  

B. Multivariate phase transfer entropy based on NUE 

Based on the traditional PTE, we establish multivariate 

phase transfer entropy (MPTE). In this study, we consider a 

multivariate dataset {𝑋, 𝑌, 𝑍1, 𝑍2, … , 𝑍𝑁−2} , where X is 

driving series, Y is target series, and 𝑍 = {𝑍2, … , 𝑍𝑁−2} are 

the remaining confounding series. We get their phase time-

series {𝛩𝑋 , 𝛩𝑌 , 𝛩𝑍}  through the Hilbert transform. The 

estimation of MPTE also involves the formulation of 

uniformly spaced embedding vectors from each variable. For 

phase time-series 𝛩𝑋, the corresponding embedding vector is 

defined as:  

 𝛩𝑡
𝑋 = [𝜃𝑡

𝑋, 𝜃𝑡−𝛿
𝑋 , … , 𝜃𝑡−(𝑚−1)𝛿

𝑋 ] (3) 

where m is the embedding dimension and δ is the time lag. 

MPTE from X to Y conditioning on Z can be defined as: 

𝑀𝑃𝑇𝐸𝑋→𝑌|𝑍 = 𝐼(𝛩𝑡+1
𝑌 ; 𝛩𝑡

𝑋|𝛩𝑡
𝑌 , 𝛩𝑡

𝑍) = 𝐻(𝛩𝑡
𝑋 , 𝛩𝑡

𝑌 , 𝛩𝑡
𝑍) +

𝐻(𝛩𝑡+1
𝑌 , 𝛩𝑡

𝑌 , 𝛩𝑡
𝑍) − 𝐻(𝛩𝑡+1

𝑌 , 𝛩𝑡
𝑋 , 𝛩𝑡

𝑌 , 𝛩𝑡
𝑍) − 𝐻(𝛩𝑡

𝑌 , 𝛩𝑡
𝑍) (4) 

where 𝐼(∙ | ∙)  defines the conditional mutual information 

(CMI) and 𝐻(∙) is the joint Shannon entropy. For a series 𝛩𝑋, 

Shannon entropy is defined as: 

 𝐻(𝛩𝑋) = − ∑ 𝑝(𝜃𝑋) 𝑙𝑜𝑔(𝜃𝑋) (5) 

where 𝑝(𝜃𝑋) is the probability mass function of the outcome 

𝜃𝑋 , typically estimated by the relative frequency of 𝜃𝑋 . 

Entropy estimation in Eq. (4-5) can be realised based on 

random variable discretisation by calculating the probability 

densities. Here, we use the k-nearest neighbours (KNN) 

estimator because of its best effectiveness for high-

dimensional data, and the number of neighbours is set as 10[9].  

For each reference point, viewed in the largest state-space, the 

distance length is defined as the distance to the Kth nearest 

neighbour. Then, densities at projected subspaces are locally 

formed by the number of points within e from each reference 

point.  

Further, we introduced a new embedding strategy, 

nonuniform embedding (NUE) into the MPTE. We formed a 

set of variables to represent the past state of the time series. 

We set the maximum of time delay for phase time-series, 𝛿𝑋 

for 𝛩𝑋  and 𝛿𝑌  for 𝛩𝑌  and 𝛿𝑍  for 𝛩𝑍 , and the delays of 

𝛩𝑋 , 𝛩𝑌 , and 𝛩𝑍 are sought within a range of 1~ maximum for 

each variable. 𝑊𝑡 is defined as the set of all lagged variables 

at time t, containing the parts 𝜃𝑡
𝑋, 𝜃𝑡−1

𝑋 , 𝜃𝑡−2
𝑋 , … , 𝜃𝑡−𝛿𝑋

𝑋  of 

phase time-series 𝛩𝑋 and the same for 𝛩𝑌 and 𝛩𝑌. We use an 

iterative scheme to generate the NUE vector. Firstly, we 

initialise an empty embedding vector 𝑉𝑛
0 = ∅. And then, we 

start an iteration processing. In the first iteration, k=1, we find 

the component in 𝑊𝑡
1 being most correlated to Θ𝑌  given by 

the KNN estimator of mutual information. At the same time, 

𝑊𝑡
1 is removed from 𝑊𝑡  

 𝑊𝑡
1 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐼(𝛩𝑌; 𝑊𝑡) (6) 

where 𝐼(∙) is the mutual information. In the middle iteration, 

k>1, the mixed embedding vector is augmented by the 

component 𝑊𝑡
𝑘  of 𝑊𝑡 , giving most information about 𝑦𝑡 

additionally to the information already contained in the 

𝑉𝑡
𝑘−1 = [𝑊𝑡

1, 𝑊𝑡
2, … , 𝑊𝑡

𝑘−1] , 𝑊𝑡
𝑘−1  will be selected by a 

standard through calculating the maximum value of the 

conditional mutual information: 

 𝑊𝑡
𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐼(𝛩𝑌; 𝑊𝑡|𝑉𝑡

𝑘−1) (7) 

where conditional mutual information 𝐼(∙) is again estimated 

by the KNN. By using the greedy forward method, each 𝑊𝑡
𝑘 

will be embedded in the already embedded vector 𝑉𝑡
𝑘−1 until 

the process stops. The termination criterion is quantified as: 

 
𝐼(Θ𝑌;𝑉𝑡

𝑘−1)

𝐼(Θ𝑌;𝑉𝑡
𝑘)

> 𝑇 (8) 

Referring to the previous study, in our work, we set the 

threshold 𝑇 as 0.95[10]. So that, this embedding process stop 

and an NUE vector 𝑉𝑡 = 𝑉𝑡
𝑘−1 is obtained. Any combination 

of the lagged variables 𝛩𝑋, 𝛩𝑌 , 𝛩𝑍 maybe included in 𝑉𝑡. 

To quantify the causal effect of 𝛩𝑋  on 𝛩𝑌 conditioned by 

the remaining confounding series 𝛩𝑍 , we calculated a novel 

MPTENUE by: 

 𝑀𝑃𝑇𝐸𝑁𝑈𝐸(𝑋 → 𝑌|𝑍) =
𝐼(Θ𝑌;𝑉𝑡

𝑋|𝑉𝑡
𝑌,𝑉𝑡

𝑍)

𝐼(Θ𝑌;𝑉𝑡)
 (9) 

where 𝑉𝑡
𝑋 represents the component of Θ𝑋 in 𝑉𝑡. It is the same 

with 𝑉𝑡
𝑌 and 𝑉𝑡

𝑍. Neurophysiological signals such as EEG are 

usually multi-channel signals covering the corresponding 

regions of interest (ROIs). It usually involves directional 

information flow between ROIs, not only channels. Here we 

extend the MPTENUE method to solve this limit.    

Suppose that ROI “M” contains m channels series, 

(𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡)) , ROI “N” contains n channels 

series (𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡)) , then the information flow 

from ROI M to ROI N is calculated as follows: 

𝑀𝑃𝑇𝐸𝑁𝑈𝐸(𝑀 → 𝑁) =
1

𝑀𝑁
∑ ∑ 𝑀𝑃𝑇𝐸𝑁𝑈𝐸(𝑋𝑚 → 𝑌𝑛|𝑍)𝑁

𝑛=1
𝑀
𝑚=1 (10) 

In this study, EEGlab toolbox was used to preprocess the 

acquired EEG signal. The EEG data was filtered with a 

bandpass of 1~ 40Hz using the finite impulse response (FIR) 

filter to eliminate the noise. Then independent component 

analysis (ICA) was applied to eliminate EOG artifacts. 

Subsequently, we calculated the corresponding phase time-

series in the specific frequency band(namely, 𝛼, 𝛽, 𝛿, 𝜃) by 

the Hilbert transform, and finally estimated the causal 

coupling using the proposed MPTENUE method. The flow 

chart of directional coupling estimation is shown in Fig.1. 

 
Fig.1. Schematic diagram of cross-frequency directed coupling algorithms. 
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Neurophysiological signals generate a typical high-

dimensional system, and it brings about the curse of 

dimension in traditional methods, which leads to lower 

accuracy in causal estimation. Here we define “Acc”, and 

“Sen” as the quantitative indicators for accuracy and 

sensitivity separately in causality assessment methods[11]:  

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (11) 

 𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12) 

where TP is true positive, TN means true negative, FN stands 

for false negative, and FP is false positive.  

III. NUMERICAL SIMULATION RESULTS 

The Hénon map is a multidimensional dynamical system 

with discrete time series, which is proposed firstly by Michel 

Hénon[12]; the model coupling diagram is shown in Fig.2. As 

a common nonlinear, non-stationary causal system, coupled 

Hènon map model is widely used in numerical simulation 

analysis[13], [14]. In this study, the Hénon map model for 

phase series with M variates was generated according to the 

following formula: 

 𝑆𝑚(𝑛) = 𝑠𝑖𝑛(2𝜋 ∙ 1000𝑛) ∙ 𝑒𝑖𝑋𝑚(𝑛), 𝑚 ∈ [1,2, … , 𝑀](13) 

where 𝑋𝑚(𝑛) can be modified as follows:  

 𝑋𝑖(𝑛) = 1.4 − 𝑋𝑖
2(𝑛 − 1) + 0.3𝑋𝑖(𝑛 − 2), 𝑖 = 1, 𝑀. (14) 

 𝑋𝑗(𝑛) = 1.4 − (0.5𝐶 (𝑋𝑗−1(𝑛 − 𝛿) + 𝑋𝑗+1(𝑛 − 𝛿)) + (1 −

                      𝐶)𝑋𝑗(𝑛 − 1))
2

+ 0.3𝑋𝑗(𝑛 − 2), 𝑗 = 2,3, … , 𝑀 − 1.(15) 

where 𝑛 = 1,2, … , 𝐿 , L is the length of time series. The 

parameter C was varied to modulate the coupling strength 

from the (i+1)th and the (i-1)th systems towards the ith system, 

𝛿  defines the coupling delay between two variates; in this 

study, we set 𝛿 = 3. This simulated data satisfies the non-

stationarity and nonlinearity of neurophysiological signals. 

 
Fig.2. The coupling diagram of the Hènon map model 

We verified the performance of the proposed MPTENUE 

method by a series of numerical simulations. The simulation 

data is set as a 4-variable Hénon map model, and the 

simulation aspect mainly included data length L, coupling 

strength C, and signal-to-noise ratio (SNR). Firstly, we 

compared the robustness of our MPTENUE with traditional 

PTE, MPTE method for the data length L. We established the 

Hénon map model, where C was 0.5, and the data length 

increased from 500 to 6000, with the step of 250. The transfer 

entropy results are shown in Fig.3. Compared with the other 

two methods, it is evident that our MPTENUE method realises 

better stability in the whole range. Even when the data length 

is small, MPTENUE can estimate higher causal strength results. 

Therefore, our method is more robust to the data length. 

We also investigated the relationship between the model 

coupling parameter “C” and the calculated causal strength. As 

shown in Fig.4, we can see that the causal strength obtained 

by the proposed MPTENUE method is higher than that obtained 

by the traditional methods, MPTE and PTE. The causal 

strength results obtained by MPTENUE are positively 

correlated with C in the whole range from 0.1 to 0.9, while 

other methods have poor effects and cannot always positively 

correlate with C. For example, the causality strength 𝑋1 → 𝑋2, 

𝑋4 → 𝑋3 calculated by the PTE method does not increase with 

the increase of “C”. 

 
Fig.3. The causal strength of the Hènon map model was calculated by 
MPTENUE, MPTE and PTE methods on different data lengths L with the 

coupling coefficient C=0.5. 

 

Fig.4. The causal strength of the Hénon map model was calculated by 

MPTENUE, MPTE, and PTE methods on different coupling coefficients C 

with the data length L=4000. 

We also consider the noise interference condition to study 

the effect of causal estimation. Similarly, we use the Hénon 

map model, where C is 0.5, and the data length L is 4000. The 

white Gaussian noise is added to the original series, and the 

SNR conditions are set from 10dB to 50dB, with a step of 2dB. 

The result is shown in Fig. 5. MPTENUE results maintained 

better stability in the whole SNR range, and under the strong 

noise condition (namely low SNR), MPTENUE still estimated 

the significant strong causal coupling. So that MPTENUE 

demonstrates superior noise robustness. 
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Fig.5. The causal strength of the Hènon map model was calculated by 

MPTENUE, MPTE and PTE methods on different SNR with L=4000, C=0.5. 

We also studied the accuracy and sensitivity of causal 

estimation in the high-dimensional system with SNR=20dB, 

length L=4000. Here, we considered 100 realisations for each 

Hénon map causal coupling with the model dimensionality 

M=30. The results of accuracy and sensitivity are shown in 

Tab.I. Compared with the other two methods, it is obvious 

that our MPTENUE method achieves the highest accuracy and 

sensitivity, 96.9% and 99.2%, respectively. 

Tab.I. The Acc and Sen results of three methods 

 MPTENUE MPTE PTE 

Acc 96.9% 73.6% 85.8% 

Sen 99.2% 79.9% 84.4% 

IV. DISCUSSION AND CONCLUSION 

This study proposed a novel directed coupling method, 
MPTENUE, for brain network evaluation and verified its 
effectiveness and superiority. Of course, the study remains a 
few limitations. We only adopted the classical Hénon map 
model in the numerical verification, considering the data 
length, SNR, and coupling parameters C. In addition to the 
Hénon map model, the widely used coupling system models 
include linear auto-regressive (AR) model, auto-regressive 
fractionally integrated moving average (ARFIMA) process, 
Rössler system model, neural mass model and so on[14]–[16]. 
Future studies will consider the simulation above these models 
to further validate the performances of the proposed method. 
In future studies, more numerical models mentioned above 
will be used for performance verification. At the same time, 
the MPTENUE method will also be applied to 
neurophysiological signals, such as EEG, to explore more 
brain science questions.  

To conclude this study, based on the traditional PTE and 
nonuniform embedding methods, a novel MPTENUE method of 
directional information flow was proposed in this paper. It 
considered the influence of remaining confounding variables. 
Meanwhile, it improved the robustness and solved the curse of 
dimension successfully. The results proved the superiority of 

the proposed MPTENUE method, with the accuracy and 
sensitivity reaching 96.9% and 99.2%, respectively. 
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