
  Abstract—The similarity is a fundamental measure from the 
homology theory in bioinformatics, and the biological sequence 
can be classified based on it. However, such an approach has not 
been utilized for electroencephalography (EEG)-based emotion 
recognition. To this end, the sequence generated by choosing the 
dominant brain rhythm owning maximum instantaneous power 
at each 0.2 s timestamp of the EEG signal has been proposed. 
Then, to recognize emotional arousal and valence, the similarity 
measures between pairwise sequences have been performed by 
dynamic time warping (DTW). After evaluations, the sequence 
that provides the highest accuracy has been obtained. Thus, the 
representative channel has been found. Besides, the appropriate 
time segment for emotion recognition has been estimated. Those 
findings helpfully exclude redundant data for assessing emotion. 
Results from the DEAP dataset displayed that the classification 
accuracies between 72%–75% can be realized by applying the 
single-channel data with a 5 s length, which is impressive when 
considering fewer data sources as the primary concern. Hence, 
the proposed idea would open a new way that uses the similarity 
measures of sequences for EEG-based emotion recognition. 
 

Index Terms—Electroencephalography (EEG), brain rhythm 
sequencing (BRS), similarity measure, sequence classification, 
emotion recognition. 
 

I. INTRODUCTION 

motion is one of the fundamental psychological factors 
that can influence many aspects of daily life, including 

communication skills, social interaction, and work efficiency. 
Therefore, its automated recognition is meaningful. In recent 
years, the electroencephalography (EEG) signal exhibits 
great potential in this field as it records the neural oscillations 
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that appeared in the brain, which shows a closer relationship 
with the emotional reaction.  

Toward EEG-based emotion recognition, the trustworthy 
feature is a primary concern. In previous works [1]–[3], it is 
found that the brain rhythms are the related features that have 
been widely employed. Specifically, they are originated from 
classifying the EEG into five frequency sub-bands: 0–4 Hz 
(δ), 4–8 Hz (θ), 8–13 Hz (α), 13–30 Hz (β), and 30–50 Hz (γ) 
[4]. Moreover, the variations of such brain rhythms have been 
viewed as the characteristics to recognize emotional arousal 
and valence. For instance, Koelstra et al. [1] explored that the 
powers of θ, α, and γ show negative correlations with arousal; 
Kim et al. [2] reported that the α power usually changes with 
the valence states of fear (negative) and happiness (positive). 
In addition, the frontal asymmetry of α power shows a steady 
correlate of valence; Onton and Makeig [3] concluded that 
there is a positive correlation between the powers of high 
frequency sub-bands (such as β and γ) and valence. 

The aforementioned works were based on the properties of 
rhythmic powers. However, the characteristics concerning the 
time-related occurrences of particular brain rhythms have not 
been investigated. Considering the similarity is a fundamental 
measure from the homology theory in bioinformatics [5], and 
biological sequence can be classified based on it, nonetheless, 
such a method has not been utilized for EEG-based emotion 
recognition, so an approach named brain rhythm sequencing 
(BRS) that interprets the EEG as the time-related sequential 
format consists of dominant rhythms has been proposed in 
this work. By applying it, the time-frequency characteristics 
of EEG can be presented simultaneously, which are available 
to perform the sequence classification through the similarity 
measure. Besides, after evaluating these sequences generated 
from the EEG recordings on different channels and times, the 
representative channel that yields the highest accuracy can be 
determined accordingly. Meanwhile, the time segment that is 
appropriate for recognition can also be estimated during the 
assessments. Those properties obtained can helpfully exclude 
redundant data and save the computation cost for EEG-based 
emotion recognition. Hence, the proposed idea would open a 
novel way that adopts the similarity measure of brain rhythm 
sequence classification to design the portable emotion-aware 
application when considering fewer data sources as the main 
concern. 

The remainder is arranged as follows: Section II describes 
the experimental data from the DEAP dataset. Then, Section III 
elaborates on the proposed methodology. Section IV shows the 
results and discussion. Finally, the conclusion of this work has 
been drawn in Section V. 
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Figure 1. Proposed BRS by choosing the dominant brain rhythm owning maximum power at each 0.2 s timestamp of an EEG signal. (NA: normalized amplitude) 

 
Figure 2. Valence classification (HV/LV) using sequences from the F8 channel 
of subject S8, DEAP. Here, DTW is used for measuring the similarity, and the 
query sequence is assigned as the same emotional state as the target sequence 
that presents a higher similarity level.  

II. EXPERIMENTAL DATASET 

In this work, the EEG signals for the experiment are from the 
DEAP dataset [1]. It included 32 subjects (17 males and 15 
females, age: 23–37 years). Each subject watched 40 different 
one-minute long music videos to elicit various emotional states. 
After watching each video, the subjects rated it (1–9) based on 
arousal (A) and valence (V). Thus, according to the individual 
ratings, the emotions have been labeled into several sub-groups 
for recognition. In arousal: high arousal (HA) with A ≥ 5 and 
low arousal (LA) with A < 5; in valence: high valence (HV) 
with V ≥ 5 and low valence (LV) with V < 5. Besides, a 10–20 
EEG system involving 32 channels was applied for recordings. 
So, for each subject, the data size was 60 s × 32 EEG channels × 
40 trials. Furthermore, the sampling rate was 128 Hz, and the 
analog passband filtering with 0.01–100 Hz has been used for 
data pre-processing, along with removing the artifacts. 

III. METHODOLOGY 

The BRS aims to interpret the EEG in a chronological order 
based on dominant brain rhythms, which can be accomplished by 
the time-frequency analysis (TFA). Moreover, the Wigner-Ville 
distribution (WVD) is a typical TFA category that enables the 
evaluation of signal power in the specific frequency domain and 
then localizes it into a corresponding time, which provides vital 
properties for realizing BRS. However, the WVD usually causes 
cross-terms that restrict obtaining the frequency information at a 
shorter instant precisely. Therefore, a suitably smoothing of the 
WVD along the time and the frequency directions is normally 
adopted. Such a variant is named the smoothed pseudo WVD 
(SPWVD) (1): 

 
(1) 

 
The independent control of h(t) and g(t) help to migrate the 

cross-terms. In addition, to calculate the precise time indices of 
the higher power regions in the generated time-frequency plane, 
the reassignment is considered [6]. Its operation is to relocate 
each value of the SPWVD at any point (t, ω) to another point 
( t̂ , ̂ ), which is the center of gravity of the signal power 
distribution around (t, ω). So, the reassigned value of SPWVD 
at any point ( t̂ ,̂ ) is the sum of all values reassigned to that 
point. This approach is reassigned SPWVD (RSPWVD) (2): 

 
 

(2) 
 
where 
 

(3) 
 
 

(4) 
with τg = tg(t) and Dh(t) = dh(t)/dt. 

Now, aiming to generate the rhythm sequence data from the 
time-frequency plane, the whole time is divided into several 
timestamps with each of 0.2 s length, which is decided by the 
relationship between the average reaction time of neurons and 
EEG [7]. On the other side, the frequency direction is divided 
into five parts according to the ranges of five brain rhythms. 
Undoubtedly, the sequence needs only one dominant rhythm 
denoted at each timestamp. Hence, the instantaneous rhythmic 
power is investigated, as the maximum one can reflect the vital 
sub-band that provides a greater contribution in terms of power 
discharge, which is pivotal information of the EEG. As a result, 
the dominant rhythm that shows maximum power contribution 
at each 0.2 s timestamp is chosen for the BRS. Following this 
way, Fig. 1 depicts a sample of BRS, in which an EEG signal 
from the FP1 channel of subject S1 in the DEAP dataset locates 
at the top, and its rhythm sequence at 25–30 s lies at the bottom.    

Next, the generated sequences can be evaluated for emotion 
recognition based on the similarity measure. Logically, the 
similar structures between the two sequences indicate similar 
functions; whereas, the dissimilarities incur various categories. 
Thus, the similarity measure can be applied for recognizing the 
rhythm sequences into different emotional states. Moreover, to 
perform the similarity measure for sequence classification, the 
target sequences related to specific emotions should be found in 
advance, which can be regarded as the standard templates. To 
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this end, the individual ratings from the self-assessments are 
utilized. Specifically, among the 40 experimental trials, the one 
with the maximum A or V is assigned as HA or HV. Inversely, 
the minimum A or V is assumed as LA or LV. Besides, if more 
than one trial is equal to the maximum or the minimum, the trial 
presented earlier is considered. For example, as for the valence 
classification of subject S8, the maximum and minimum were 
8.82 at trial 10 and 1.21 at trial 36. So, the generated sequences 
from these two trials have been used as the target sequences of 
HV and LV, as illustrated in Fig. 2. Then, the other trials have 
been assigned as query sequences accordingly. Furthermore, 
dynamic time warping (DTW), a distance-based approach that 
calculates an optimal alignment is exploited to measure the 
similarity level between pairwise sequences. Consequently, the 
query sequence is assigned as the same emotional state as the 
target sequence that exhibits a higher similarity result. Besides, 
the sequences are generated based on the channels and times, 
hence, the evaluations in this work have been performed on 32 
channels and 5 types of time lengths (5 s, 10 s, 20 s, 30 s, and 60 
s). Finally, the vital properties for emotion recognition, such as 
the representative channel and appropriate time segment, have 
been obtained according to the highest classification accuracy. 

IV. RESULTS AND DISCUSSION 

Table I displays the accuracies (mean ± standard deviation) 
based on different time lengths of sequences from 32 subjects, 
in which the first column denotes the length and the rest are the 
accuracies of arousal and valence. As seen, the accuracies by 
using diverse lengths are close. A short length is helpful to save 
computation cost, so the 5 s has been chosen to segment the 
sequences for emotion recognition. In this way, the arousal 
classification results of subject S13 have been illustrated in Fig. 
3, in which the three maps depict the accuracies of 32 channels 
at the three chosen segments from the periods of start (0–5 s), 
middle (25–30 s), and end (55–60 s) parts respectively. Here, 
the deeper the red, the higher the classification accuracy. In Fig. 
3, it can approximately disclose the performance of sequence 
classification during the whole duration, and meanwhile, the 
accuracy on the same channel dynamically changes during the 
process. For example, the PO3 channel at 0–5 s provides higher 
accuracy; whereas, it has lower results at other time segments. 
It implies that the sequence from the PO3 channel at the start 
period is more useful to recognize the arousal of S13. So, the 
representative channel is PO3 and the appropriate time segment 
is 0–5 s for arousal recognition of S13. Following this way, the 
results of all 32 subjects have been summarized in Table II.  

In Table II, as for the representative channel, besides the two 
subjects (S1 and S6) are at the same location for arousal and 
valence classifications, the others are from different locations. 
It reveals that diverse locations cope with particular dimensions 
in emotion recognition for most of the cases. Such a statistical 
result is consistent with [8]. Furthermore, about the appropriate 
time segments, S18 and S31 are found at the same period for 
arousal and valence classifications; whereas, the segments of 
the others are separated. It discloses that different emotional 
dimensions are usually elicited by various pieces of the stimuli. 
Meanwhile, it is observed that for 20 subjects, the appropriate 
time segment of arousal is earlier than valence. It indicates that 

during the elicitation, arousal has been analyzed preferentially, 
then valence has been recognized later. In addition, the results 
of Table II also exhibit the individual characteristics in emotion 
recognition, as the channels and times are varied among the 
subjects. It is reasonable because there is a common sense in 
emotion science that emotional reaction is more relevant to the 
experiences, backgrounds, and cultures of the subjects [9]. In 
this regard, the subject-dependent analysis generally produces a 
better result than the subject-independent method. As a result, 
the personalized models based on vital characteristics such as 
the representative channel and appropriate time segment are 
valuable for achieving EEG-based emotion recognition. 

A comparative study with previous related works has been 
conducted in Table III, in which the first column lists the work, 
and the rest display the number of channels used, the applied 
time length of EEG data, main methodology, and the accuracies 
for arousal and valence classifications correspondingly. 

TABLE I 
APPLIED TIME LENGTHS OF SEQUENCE AND CLASSIFICATION ACCURACIES 
Length (s) Arousal classification (%)  Valence classification (%) 
5 75.66 ± 6.34 72.86 ± 3.30 
10  74.51 ± 6.90 71.63 ± 3.71 
20  73.03 ± 6.45 70.07 ± 4.47 
30  71.79 ± 7.21 69.65 ± 4.17 
60  69.33 ± 7.12 67.19 ± 4.58 

TABLE II 
REPRESENTATIVE CHANNEL AND APPROPRIATE TIME SEGMENT (5 S LENGTH) 

FOR EMOTION RECOGNITION OF 32 SUBJECTS IN THE DEAP DATASET 

Subject 
Arousal classification  Valence classification  

RC 
ATS 
(s) 

ACC 
(%) 

RC 
ATS 
(s) 

ACC 
(%) 

S1 FC5 5–10 68.42 FC5 45–50 73.68 
S2 F3 0–5 68.42 AF4 5–10 71.05 
S3 PZ 15–20 84.21 F7 25–30 65.79 
S4 P4 55–60 81.58 CP2 45–50 76.32 
S5 PO3 35–40 73.68 P3 30–35 73.68 
S6 T7 30–35 71.05 T7 40–45 78.95 
S7 P7 40–45 73.68 PZ 0–5 76.32 
S8 F3 5–10 71.05 CP1 15–20 71.05 
S9 F7 50–55 76.32 CP6 20–25 73.68 
S10 T7 20–25 73.68 F3 35–40 68.42 
S11 P7 35–40 73.68 F3 50–55 73.68 
S12 FP1 10–15 86.84 CZ 15–20 71.05 
S13 PO3 0–5 89.47 AF3 10–15 68.42 
S14 CP2 40–45 81.58 T8 5–10 68.42 
S15 P7 0–5 71.05 C3 25–30 68.42 
S16 C4 10–15 73.68 CP2 35–40 81.58 
S17 FP2 15–20 73.68 O1 35–40 73.68 
S18 FZ 10–15 71.05 T7 10–15 73.68 
S19 FZ 0–5 76.32 O2 5–10 71.05 
S20 CZ 55–60 84.21 O1 25–30 76.32 
S21 OZ 0–5 84.21 FC6 30–35 71.05 
S22 PO4 35–40 73.68 FZ 50–55 73.68 
S23 AF3 15–20 71.05 T7 45–50 73.68 
S24 F3 20–25 84.21 AF4 0–5 73.68 
S25 T8 15–20 81.58 PZ 55–60 71.05 
S26 FC6 0–5 68.42 FZ 45–50 73.68 
S27 F3 55–60 73.68 FC6 10–15 76.32 
S28 FZ 40–45 68.42 P3 45–50 71.05 
S29 P4 25–30 76.32 AF4 10–15 71.05 
S30 FC2 35–40 65.79 P7 0–5 76.32 
S31 CZ 35–40 68.42 FZ 35–40 73.68 
S32 FC6 15–20 81.58 F3          25–30           71.05 

Acronym: RC-representative channel; ATS-appropriate time segment. ACC- 
accuracy.
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Figure 3. Evaluations of arousal classification (HA/LA) accuracies by using the rhythm sequences from different channels and time segments. The deeper the red, 
the higher the accuracy. Here, the three chosen segments presented are at the start, middle, and end parts: (a) 0–5 s; (b) 25–30 s; (c) 55–60 s. (subject S13, DEAP) 

TABLE III 
COMPARATIVE STUDY OF EEG-BASED EMOTION RECOGNITION WORKS 

 
Number of 

channels used 
Applied time length 

of EEG data 
Main methodology 

Classification accuracy (%)  
Arousal Valence 

Chao et al. [10] 32 60 s Capsule network 68.28 66.73 
Yoon et al. [11] 32 60 s Bayesian weighted-log-posterior function 70.01 70.09 
Atkinson et al. [12]  14 60 s Maximum relevance minimum redundancy method  73.06 73.14 
Kumar et al. [13] 2 30 s Bispectral analysis 64.84 61.17 
Zhuang et al. [14] 8 5 s Empirical mode decomposition 71.99 69.10 
This work 1 5 s BRS with similarity measure 75.66 72.86 

As seen, the previous related works have not considered the 
similarity measure of sequence classification. Meanwhile, the 
single-channel solution for emotion recognition was ignored. 
The fewer the channels, the fewer the electrodes. Therefore, the 
representative channel found by the proposed idea is beneficial 
for designing the portable emotion-aware device. Regarding the 
applied time length, Zhuang et al. [14] utilized 5 s EEG data for 
recognition. But, which 5 s is proper has not been investigated. 
So, the appropriate time segment based on 5 s has been assessed 
in this work. Finally, the proposed method produces accuracies 
between 72%–75% by employing single-channel and 5 s data 
only, which is impressive when considering fewer data sources. 

V. CONCLUSION 

In this work, the BRS with similarity measure has been 
proposed for EEG-based emotion recognition, and to evaluate 
its performance, 32 subjects from the DEAP dataset have been 
studied. Results displayed that the classification accuracies of 
72%–75% have been achieved by utilizing fewer data sources 
compared with the previous works. Besides, the representative 
channel that discloses vital scalp location, and the appropriate 
time segment that indicates a short period for recognition, have 
been investigated. Such properties not only disclose individual 
characteristics for emotion recognition but also helps to design 
the emotional-aware device by applying the single-channel data. 
Hence, the proposed idea would open a novel way that uses the 
similarity measure of sequence classification for EEG-based 
emotion recognition. 
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