
  

  

Abstract— While the psychological Stroop color test has 
frequently been used to analyze response delays in temporal 
cognitive processing, minimal research has examined 
incorrect/correct verbal test response pattern differences 
exhibited in healthy control and clinically depressed 
populations. Further, the development of speech error features 
with an emphasis on sequential Stroop test responses has been 
unexplored for automatic depression classification. In this 
study which uses speech recorded via a smart device, an 
analysis of n-gram error sequence distributions shows that 
participants with clinical depression produce more Stroop color 
test errors, especially sequential errors, than the healthy 
controls. By utilizing n-gram error features derived from multi-
session manual transcripts, experimentation shows that trigram 
error features generate up to 95% depression classification 
accuracy, whereas an acoustic feature baseline achieve only 
upwards of 75%. Moreover, n-gram error features using ASR 
transcripts produced up to 90% depression classification 
accuracy. 

I. INTRODUCTION 

Cognitive interference tasks help to study the effects of 
mental health disorders. A commonly used cognitive load 
task is the Stroop color test [1, 2], which was developed to 
study human behavior and cognitive bias. Studies [3-6] have 
used on the Stroop color test to investigate depression and the 
impact of this mood disorder on cognitive response. When 
compared to healthy controls during Stroop color tests, 
individuals with depression have demonstrated a 
deterioration of cognitive function, including psychomotor 
slowness and more difficulty ignoring irrelevant information 
[3, 4]. 

The degree of error patterns made during the Stroop color 
test have received little attention. For example, in [3, 4], no 
significant differences in correct/incorrect responses between 
healthy and depressed individuals were found. However, [3] 
only examined whether the entire Stroop color test session 
was correctly or incorrectly completed, and not the 
correctness of individual color-text items. Furthermore, while 
[4] examined the correctness of individual color-text items 
per Stroop color test session, they did not evaluate successive 
response patterns. Remarkably, in the Stroop color test 
literature, we could not find any study that purposefully 
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investigated sequential verbal error patterns in healthy and 
depressed individuals - or for that matter, other types of 
mental illness. However, studies [7-9] examining read aloud 
passages and spontaneous speech have indicated that 
individuals with depression exhibit greater frequency of 
cognitive impairment, malapropisms, referential failure, and 
verbal disfluency than healthy controls. 

In [10], patients with depression revealed an abnormal 
behavioral response to their poor performance during 
CANTAB battery cognitive tasks. In a depressed population 
relative to a healthy control, it was shown that failure on task 
problem the first time increased the odds of failure on the 
next problem. According to [10], this unusual behavioral 
response (e.g., increased task errors, sequential errors) and its 
‘snowballing effect’ may be a key indicator of depression 
severity. 

Automatic techniques using speech processing have been 
explored to help identify individuals with depression. The 
prevailing method used to identify depression from the 
speech signal has included acoustic-based features (e.g., 
glottal, prosodic, spectral); however, linguistic-based features 
(e.g., type-tokens, syntax) derived from speech transcripts 
have also shown effectiveness [11]. Recent studies [11, 12] 
on automatic speech-based depression classification have 
advocated for speech-to-text feature techniques on account of 
its relatively low feature dimensionality. In [12], it was 
advised that an examination beyond acoustic properties will 
help yield new features that capture syntactic structures (e.g., 
word sequences) unique to individuals with and without 
depression. 

The research in this paper is motivated by the shortage of 
analysis of error types in previous speech-based Stroop color 
test mental health literature [2-4]. Furthermore, semi-
grounded on [10, 12], we wish to investigate the crucial link 
between a person’s mood state and his/her task performance, 
especially with consideration towards serial cognitive-verbal 
tasks. Due to cognitive-motor impairment, a sub-symptom of 
depression, we hypothesize that individuals suffering from 
depression will exhibit a greater number of errors during the 
Stroop color test than a healthy population. Also, based on 
the knowledge that as mistakes are made (i.e., depressive 
individuals abnormally exhibit less motivation to improve 
their task performance when compared to a healthy 
population [10]) we hypothesize that individuals with 
depression will exhibit greater frequency of consecutive 
Stroop color test errors than healthy controls. 

II. DATABASE 

The speech recordings used in this study were privately 
collected in the Netherlands and consisted of 10 non-
depressed healthy control (HC) and 10 clinically depressed 
English-speaking participants (CD) (see Fig. 1). For both the 
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HC and CD, the average age of a participant was 30 years old 
with a similar age range of 19 to 53 years old. The dataset 
described in this paper was approved by the IRB. 

All participants were evaluated by a mental health expert 
using a structured interview and given the Montgomery-
Åsberg Depression Rating Scale (MADRS) [13]. The 
MADRS is a common ten-item diagnostic questionnaire used 
to help evaluate depression disorder severity. The MADRS 
has five depression severity label score ranges: normal (0-6), 
mild (7-19), moderate (20-34), and severe (35-60). 

Using a smart device app, all participants were asked to 
complete a series of ten Stroop color test sessions in English, 
with each session consisting of ten color-text items (i.e., 10 
sessions × 10 color-text items). There were ten possible 
color-text items (e.g., black, blue, brown, green, gray, pink, 
purple, red, orange, yellow). Per item, the color-text 
mismatch or match order was randomized for every speaker. 

Sessions were in a quiet office over the course of roughly 
a single day. For each session, a series of ten individual 
color-text words were displayed in 800ms intervals. During 
each Stroop color test session, participants were instructed to 
say the ink color of the printed word and not the actual word. 
The average participant file length per session was 10sec. 

 
Figure 1. Stroop color test database female ( ° ) and male ( + ) participant 
MADRS severity score distributions. Non-depressed participants are 
indicated in black (≤7 MADRS), whereas clinically depressed participants 
are in gray (≥10 MADRS). 

III. METHODS 

A. Human vs. Automatic Transcripts 
All participant speech recordings were transcribed by a 

native English-speaking annotator with a background in 
speech science. The annotator was instructed to focus on the 
verbal sequence of color words related to the Stroop color 
test. Therefore, the annotator ignored any extraneous verbal 
participant interjections (e.g., ‘uh’, stammers, cusses). Also, 
if participants made an attempt to change their verbal 
response, their revisions were lodged in the transcript rather 
than their initial response. Approximately 5% of the 
recordings contained spoken terms outside of the ten possible 
color words, especially in recorded sessions where errors 
were more frequent. 

Each participant’s recorded Stroop color test session was 
also processed using Amazon Web Services™ Automatic 
Speech Recognition (ASR) software using a large vocabulary 
Dutch-English language model. To correct minor ASR 
transcription errors a python script with a similar word look-
up list was executed to replace homonyms (e.g., read/red, 
blue/blew) and similar sounding terms (e.g., black/back, 
red/ready, yellow/hello). This script also ignored common 
insertions, such as ‘uh’ or ‘um’. Measures of phonetic 
similarity (e.g., edit distance), have been implemented 

previously with ASR systems to help assess transcript errors 
[14]. 

B. n-Gram Error Feature Set 
This section describes how the proposed n-gram error 

transcript-based features were calculated. Each session has a 
ground truth transcript (i.e., ink color of word) 𝒘! =
{𝑤",!, …𝑤$,!, … , 𝑤%,!} and a spoken transcript (i.e. what color 
participant actually said) 𝒘"! = {𝑤"",!, …𝑤"$,!, … ,𝑤"%,!}, where 
𝑤$,! represents the 𝑘&' word in the 𝑠&' session. A correct 
response ‘1’ is recorded if 𝑤"$,! matches 𝑤$,!, otherwise it is 
an incorrect response ‘0’. 
 𝑐$,! = ,01							

𝑤"$,! ≠ 𝑤$,!
𝑤"$,! = 𝑤$,!

 (1) 

Based on (1), the transcript 𝑤(! can be converted into a set 
of binary strings indicating the correctness of responses 
𝒄!={𝑐",!, … , 𝑐$,!, … , 𝑐%,!}, e.g., if 𝒘! =
[𝑟, 𝑜, 𝑦, 𝑝𝑖, 𝑏𝑙, 𝑟, 𝑔𝑟, 𝑦, 𝑟, 𝑜] and 𝒘" ! = [𝑟, 𝑜, 𝑏𝑙, 𝑝𝑖, 𝑔𝑟, 𝑟, 𝑔𝑟, 𝑦, 𝑟, 𝑟], 
then 𝒄! = [1,1,0,1,0,1,1,1,1,0]. 

Based on 𝒄!, we consider unique 𝑐!(, and sequential 
patterns 𝑐!

(,) and 𝑐!
(,),*, which are referred to as unigrams, 

bigrams and trigrams, where 𝑖, 𝑗,𝑚 ∈ {0, 1}. The number of 
occurrences was then calculated for all possible patterns 𝑐!(, 
𝑐!
(,) and 𝑐!

(,),*, leading to 𝒄!+,", 𝒄!+,- and 𝒄!+,. respectively, 
which were then concatenated to form the error-based pattern 
features 𝒆!. 
 𝒆! = [(𝒄!+,")/	(𝒄!+,-)/	(𝒄!+,.)/]/ (2) 

where 𝒆!+," = [#(𝑐!0), #(𝑐!")]/, 𝒆!+,- = [#(𝑐!00), #(𝑐!0"),
#(𝑐!"0), #(𝑐!"")]/, and 𝒆!+,. = [#(𝑐!000), #(𝑐!00"),
#(𝑐!0"0), #(𝑐!"00), #(𝑐!0""), #(𝑐!"0"), #(𝑐!""0), #(𝑐!""")]/, and # 
denotes the counting operation. 

Effectively, the n-grams represent a distribution of pattern 
sequences per session that provide detailed information 
regarding the number of individual errors, number of errors 
in a row, and overall error pattern distributions. Once all n-
gram error distributions were calculated for each of the ten 
Stroop color test sessions, sets of unigram, bigram, and 
trigram distributions were averaged per individual session to 
create a set of fourteen n-gram error features per participant. 
Consecutive sessions (e.g., 1-2, 1-3, …, 1-10) were averaged 
to create multi-session n-gram error feature sets. 

C. Acoustic Feature Set 
For an acoustic feature baseline, frame-level voice 

activity detection was applied to extract segments of speech 
only and frames that included silence were removed. 
Spectral features (e.g., MFCC, formants) were then extracted 
from the speech segments of each file using a 20ms window 
with 50% overlap. The 100-dimensional acoustic feature set 
included computed functionals for the mean, standard 
deviation, skewness, kurtosis, and 10%/90% percentiles. 

D. System Configuration 
Fig. 2 summarizes the experimental design steps. 

Initially, speech transcripts (𝑤"!) per session were compared 
with the Stroop color test ground-truth (𝑤!) and converted 
into a binary string form (𝑒!). Binary string representations 
were then analyzed using n-gram counts per participant test 
session. 
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Figure 2. Experimental design for analyzing manual and ASR based n-gram 
errors derived from participants’ verbally recorded responses of the Stroop 
color test. 

E. Experimental Settings 
Similarly to other speech-based depression studies [15, 

16], due to the equal number of HC and CD participants, 
binary HC/CD classification accuracy was reported for 
experiments herein. This accuracy was computed by 
calculating the ratio of number of correct test identifications 
to the total number of test files per leave-one-out cross fold 
validation experiment, and then averaging all individual 
leave-one-out cross fold validation results. Therefore, no 
participant was found in both training and test during fold 
experiments. As a backend classifier, a linear support vector 
machine (SVM) with a polynomial kernel function (order = 
3) was applied due to its robustness to overfitting and 
previous application in mental health studies [15-17]. The 
SVM used 3-fold cross validation to determine the optimal C 
parameter (e.g., ranged from log 10e-5 to 10e1). 

While this experimental database consists of multi-
session data, it contains a relatively small participant sample 
size resulting in potentially low statistical power. 
Unfortunately, the sensitive nature of mental illness and 
patient privacy limits access to speech-based clinical 
depression data in general. For example, there are currently 
no publicly available recordings of individuals with 
depression completing the Stroop color test. 

IV. RESULTS AND DISCUSSION 
Over many sessions, due to the Stroop color test 

cognitive processing interference, it was anticipated that 
even for the HC participants, sporadic errors would be 
recorded. Based on manual transcripts, the HC participants 
completed 67% of the test sessions without producing a 
single mistake on a test item, whereas the CD participants 
achieved only 56% of the test sessions error-free. Unlike 
previous studies [3, 4], analysis herein indicated that the CD 
participants had more difficulty with avoiding an error 
during multi-session Stroop color tests. 

Further analysis based on manual transcripts shown in 
Fig. 3 indicated that the CD participants produced more n-
gram ‘0’ (i.e., errors) than the HC. For example, using all 
test sessions, the average number of ‘0’ was 2.06 for the CD 
participants, whereas it was only 1.39 for the HC 
participants. Furthermore, as anticipated, CD participants 
had a higher average for sequential n-gram errors (e.g., ‘00’, 
‘000’, ‘001’, ‘100’) than the HC participants. 

Interestingly, manual transcript n-gram error patterns 
shown in Fig. 3 also demonstrated that the HC participants 
had an approximately 30% increase in average ‘101’ 

occurrences than the CD participants. Therefore, to a 
moderate degree, after an error, the HC participants are more 
capable of recovering from a mishap on their next response 
than the CD participants according to the manual transcripts. 
The CD participants’ inability to recover after an error was 
further supported as on average they had ‘001’ and ‘100’ 
occur more than twice as often as the HC participants. 

 
Figure 3. Average percentages of n-gram errors over sessions 1-10 based on 
manual transcripts for HC (black) and CD (gray) participants. The ‘0’ 
represents an incorrect Stroop color word response, whereas a ‘1’ represents 
a correct response. 

Since manual transcription is labor intensive, a natural 
question is how well n-gram features perform using a 
transcript generated from a fully automated method. In Fig. 
4, average n-gram analysis based on ASR transcripts also 
showed that CD participants demonstrated an increase in 
errors when compared with HC participants. For the ASR-
based transcripts, a slight increase in ‘0’ n-gram errors (8%-
13%) when compared with the manual transcripts was 
observed for both HC and CD participants. This increase 
was attributed to automated transcript errors (i.e., higher 
word-error rate than manual method) and difficulty 
automatically assessing participants’ revisions. Nevertheless, 
in comparing the average n-gram distributions derived from 
manual and ASR transcripts, similar distribution trends were 
recorded (i.e., 12 out of 14). For example, for both the 
manual and ASR based transcripts, sequential n-gram errors 
(e.g., ‘00’, ‘000’, ‘001’, ‘100’) had higher values for the CD 
than the HC participants. 

 
Figure 4. Average percentages of n-gram errors for sessions 1-10 based on 
ASR transcripts for HC (black) and CD (gray) participants. 
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Shown in Fig. 5, the acoustic, unigram, bigram, trigram, 
all n-grams, and trigram best features were evaluated for 
depression classification. The trigram best features were 
based on trigrams that demonstrated the most separability 
between HC and CD classes found previously in Fig. 3 and 
4. When compared with trigram error features, classification 
accuracy results indicated that acoustic, unigram and bigram 
feature sets were less accurate at classifying participants. It 
is believed that the trigram feature set (8 dims.) did well 
because it consists of more unique sequential error pattern 
information, whereas the unigram (2 dims.) and bigram (4 
dims.) feature sets were more limited. 

 
Figure 5. 2-class (HC/CD) classification results using leave-one-out cross 
validation for acoustic (solid white), n-gram manual (black pattern) and 
ASR (gray pattern) transcript n-gram error feature sets based on all sessions 
combined (1-10). 

To a small degree, the manual transcript features 
generally outperformed the ASR based features (6% average 
increase); due in part to the increased word-error rate found 
in the ASR transcripts. Using optimal ‘best’ trigram feature 
selection, based on analysis of Fig. 3 and 4 (e.g., ‘001’, 
‘010’, ‘101’, ‘110’), depression classification results were 
maximized (90%) for manual and ASR derived features. 

An investigation of feature type and accuracy per 
individual session was also conducted. In Fig. 6, the first 
session produced the lowest depression classification 
accuracies for the n-gram error features. This weaker first 
session depression classification result when compared to 
subsequent sessions, is attributed to initial test learning 
phenomena; wherein participant task familiarity, 
expectation, and ability increases as more sessions are 
completed.  

 
Figure 6. Individual Stroop color test 2-class (HC/CD) classification results 
using acoustic feature set (100 dims.), all manual n-gram error feature set 
(14 dims.) and all ASR n-gram feature set (14 dims.) transcripts. 

For future Stroop color test collections, it is advised that 
a fair degree of participant practice is allotted; or that the 
initial test session be precluded from analysis, as it is 
generally less dependable than later sessions. Results shown 
previously in Fig. 6, and also in Fig. 7 and 8, demonstrated 
classification accuracy variance was greatest during the 
initial Stroop color test sessions 1-3.  

In addition to individual session feature depression 
classification, experiments were conducted to investigate 
features from accumulated sessions. Across multiple 
successive test sessions, the acoustic features maintained a 
depression classification accuracy range of 55%-75%, 
whereas the n-gram error feature set had a range of 5%-85%. 
However, it is shown in Fig. 7 that as the number of 
successive test sessions were averaged into the n-gram error 
feature set, stability and improvements in its depression 
classification accuracy were reported. For both manual and 
ASR derived features, computing n-gram error features from 
≥7 sessions information results in a relatively less variable 
depression classification accuracy than using ≤4 sessions. 
Further, a manual n-gram error feature experiment was 
conducted using consecutive sessions in reverse (e.g., 10, 
10-9, 10-8, …, 10-1), wherein depression classification gains 
were again observed beyond ≥7 sessions with up to 85% 
depression classification accuracy. 

 
Figure 7. 2-class (HC/CD) classification results showing a comparison of 
acoustic (100 dims.), all manual (14 dims.) and ASR (14 dims.) transcript-
based n-gram error features. 

Shown in Fig. 8, depression classification results using the 
trigram features with ≥9 sessions produced higher accuracy 
than using all n-gram error features (see previous Fig. 7). 
Again, it was observed that as the number of sessions 
increased, so did depression classification accuracy. 
Furthermore, although not shown, using manual transcript 
four best trigram features (e.g., ‘001’, ‘010’, ‘101’, ‘110’) 
the highest depression classification accuracy (95%) was 
recorded using sessions 1-8 and 1-9. Again, similarly to 
other feature types, utilizing ≥7 sessions led to improved 
depression classification accuracy for the best trigram error 
feature set. 

The steady rise in depression classification performance 
as more successive Stroop color test sessions were included 
in the n-gram error feature sets shown in Fig. 7 and 8 were 
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attributed to the CD participants propensity for motivational 
fatigue and negative response to failure [10]. For manual 
transcript ‘0’ (e.g., errors), the ND participants averaged 
2.02 in sessions 1-5 and 0.78 in sessions 6-10; whereas the 
CD participants averaged 1.85 in sessions 1-5 and 1.83 in 
sessions 6-10. With additional session practice, the ND 
participants were able to reduce their average number of 
errors by more than half. However, the CD participants 
maintained approximately the same average number of 
errors as sessions increased. 

 
Figure 8. 2-class (HC/CD) classification results for manual (8 dims.) and 
ASR (8 dims.) transcript-based trigram error features. 

V. CONCLUSION 
In this study, we proposed a novel approach to speech-

based depression classification using a binary analysis of 
Stroop color test responses and n-gram error features. We 
found that participants with depression demonstrated a 
higher frequency of errors during the Stroop color test than 
the healthy control. Moreover, we revealed a crucial link 
between clinically depressed participants’ mental health 
status and their impaired ability to recuperate with correct 
responses after Stroop color test errors than the healthy 
control. Depression classification accuracy results using low 
dimensional n-gram error features were competitive with the 
baseline acoustic features. Further, as the number of sessions 
used to compute n-gram features increased depression 
classification accuracy improved. This study shows that with 
sufficient Stroop color test session data (≥7 sessions), low-
dimensional manual or ASR-derived trigram error features 
can produce relatively good depression classification 
accuracy (75%-95%). 

Based on our experimental Stroop color test results, more 
research on n-gram error features is warranted. It is believed 
that the Stroop color test n-gram error features may also 
prove useful for identifying or monitoring other types of 
neurological illnesses, such as: dementia, traumatic brain 
injury, and multiple sclerosis. 
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