
  

 
 

Abstract— Brain age gap, the difference between an individual’s 
brain predicted age and their chronological age, is used as a 
biomarker of brain disease and aging. To date, although previous 
studies used structural magnetic resonance imaging (MRI) data 
to predict brain age, less work has used functional network 
connectivity (FNC) estimated from functional MRI to predict 
brain age and its association with Alzheimer’s disease 
progression. This study used FNC estimated from 951 normal 
cognitive functions (NCF) individuals aged 42-95 years to train a 
support vector regression (SVR) to predict brain age. In the next 
step, we tested the trained model on two unseen datasets, 
including NCF and mild dementia (MD) subjects with similar age 
distribution (between 50-80 years old, N=70). The mean brain age 
gap for the NCF and MD groups was -2.25 and 2.08, respectively. 
We also found a significant difference between the brain age gap 
of NCF and MD groups. This piece of evidence introduces the 
brain age gap estimated from FNC as a biomarker of Alzheimer's 
disease progression.  

 

I. INTRODUCTION 

The brain is a complex network of functionally and 
structurally interconnected regions. Functional network 
connectivity (FNC), which measures the communication 
between brain networks, has been shown to plays a key role 
in complex cognitive processes. FNC can provide insight into 
how large-scale neuronal communication in the human brain 
relates to human behavior and how this relationship may be 
altered in neurodegenerative disease.  
Besides, recently, it has been shown that the predicted brain 
age gap, the difference between predicted brain age and 
chronological age, based on the structural MRI (sMRI) 
reveals information about the neurophysiological phenotype 
of the neurological disorders [1]. Another study based on the 
sMRI showed that the brain age gap 
successfully predicts mortality rate in older subjects [2]. This 
proves that the acceleration or deceleration of biological age 
relative to chronological age could be a better indicator of the 
future risk of experiencing age-associated health issues. 
However, most previous studies used sMRI [1]–[4]  and rs-
fMRI [5] data for brain age prediction , less work is done on 
the brain age prediction based on FNC estimated from rs- 
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fMRI . In the current study, we hypothesized that FNC would 
be a predictor of brain age, and the brain age gap estimated by 
FNC data would be a biomarker of Alzheimer’s disease 
progression.  To test this hypothesis, we trained a support 
vector regression (SVR) based on the FNC estimated from 
healthy subjects and tested that model on the FNC of the 
unseen healthy subjects and mild dementia patients. Next, we 
calculated the brain age gap of both groups.  

II. MATERIALS AND METHODS 

A. Participants 
This study used 1091 fMRI data and their chronological age 
when scanning from the Open Access Series of Imaging 
Studies (OASIS)-3 cohort. The data are collected across 
several ongoing studies in the Washington University Knight 
Alzheimer Disease Research Center over 15 years [6]. We 
used the clinical dementia rating scale sum of boxes (CDR-
SOB) scores to evaluate the participant's cognitive stage at 
scanning time. Overall we had 1021 normal cognitive function 
(NCF, CDR-SOB=0)   and 70 mild dementia (MD, 4.5≤CDR-
SOB≤9) subjects [7]. The mean, standard deviation, and the 
range of the NCF subject's age are 69.68, 8.52, and 42-95. For 
the MD subjects, the mean, standard deviation, and the range 
of the age are 73.34, 7.51, and 50-85 (Fig.1b). Also, the mean 
and standard deviation of the mini-mental state examination 
(MMSE) score in the MD group was 22.15±4.18. 

B. Data Acquisition 
Two scanners of TIM Trio 3T (Siemens Medical Solutions 
USA, Inc) with a 20 channel head coil on 3T scanners were 
used to collect rs-fMRI. High resolution T2*-weighted 
functional images were acquired using echoplanar imaging  or 
EP sequence with TE =27 ms, TR = 2.2 s, flip angle = 90˚, 
slice thickness = 4mm, slice gap (center-to-center) = 4 mm, 
matrix size = 64, and  field of view (FOV)= 256×256×128 
mm3. The duration of the scanning was 6 minutes.   

C. Preprocessing and functional network connectivity 
estimation 
The statistical parametric mapping (SPM12, 
https://www.fil.ion.ucl.ac.uk/spm/) running in  
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MATLAB2019  was used to preprocess the fMRI data. We 
removed the first five dummy scans before preprocessing.  
We then used rigid body motion correction to account for  
subject head movement. Next, we did spatial normalization 
by echo-planar imaging (EPI) template into the standard 
Montreal Neurological Institute (MNI) space. Finally, we 
used a Gaussian kernel to smooth the fMRI images using a 
full width at half maximum (FWHM) of 6mm.  
In the next step, we used the NeuroMark pipeline to extract 
subject-unique intrinsic connectivity networks (ICNs) with 
correspondence across different subjects [8]. Then, 53 ICNs 
was obtained for each subject and put them in seven domain 
networks. These domain networks  included subcortical 
network (SCN), auditory network (ADN), 
 sensorimotor network (SMN), visual network (VSN), 
cognitive control network (CCN), the default-mode network  
(DMN), and cerebellar network (CBN).  More details on the 
extracted ICNs are provided in [9].  
Next, Pearson correlation was used to calculate a 53×53 
correlation matrix, which shows the correlation between any 
pair of ICNs. Overall, we had 1378 connectivity features for 
each subject. Fig. 2 a, b, & c show the mean FNC across all 
NCF train data, NCF test data, and MD test data, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in this figure, we observe a clear difference in 
VSN/SMN connectivity between NCF and patients with MD. 
This is consistent with our previous finding that showed less 
functional connectivity between VSN and SMN in the patient 
with MD[9]. 

D. Brain age prediction model 
All 1378 connectivity features and the chronological age from 
951 NCF training subjects (Fig.1a) were used to train an SVR 
model in MATLAB2019 (Fig.1c).  The best hyperparameters, 
including kernel function, epsilon, and BoxConstraint, were 
selected through an optimization process. The optimized 
kernel function, epsilon, and BoxConstraint were linear, 
0.4554, 0.008. Then, we tested the model on unseen NCF and 
MD datasets (Fig.1b). Finally, we calculated the difference 
between brain predicted age and chronological age for each 
individual in both unseen datasets.Nine hundred fifty-one 
healthy subjects were used for training the model. The model 
was tested on two unseen datasets. The first test dataset 
includes 70 NCF subjects and the second test dataset includes 
70 MD patients. The age distribution of both datasets was 
similar. 
 

(a) 

(b) 

Fig.1. An overview of data ad method used in this study.  a) The age distribution of normal cognitive function (NCF, N=951, age: 69.38± 8.52, range 
between 42-95) subjects used for training a support vector regression (SVR). b) The age distribution of unseen test data including NCF (blue, N=70, 
age: 73.66± 7.47, range between 50-85) and  mild dementia or MD (red, N=70, age: 73.34± 7.51, range between 50-85).  The age difference between 
two test datasets was not significant (p=0.8).  c) The whole brain functional network connectivity (FNC) and the age of the NCF train data were used 
to train an SVR. Then, the unseen NCF and MD FNC was fed to train SVR to predict individual’s brain age. Next, the difference between brain predicted 
age and chronological age or brain gap is calculated for both groups.  

(c) 
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III. RESULTS 
After training an SVR model using the train NCF dataset, we 
tested that model on unseen NCF and MD test data. Fig. 3a  
shows the correlation between predicted brain age and the 
chronological age in NCF test data (r=0.73, p=5.3e-13, N=70). 
This result proves that the FNC features would be a predictor 
for brain predicted age.  Fig. 3b shows the same correlation for 
the MD test data (r=0.33, p=0.004, N=70). This result shows 
that the model based on healthy subjects could better predict 
the healthy subject age than the MD subjects. Fig. 3 c shows  
the brain age gap of NCF and MD subjects. In this graph, the 
vertical dash lines show the mean of the brain age gap of NCF 
(blue) and MD (red) groups. The mean and standard deviation 
of the brain age gap for the NCF and MD group was -2.2581± 
5.0879 and 2.0814± 7.4520. This result shows that the brain 
 age gap was increased in MD subjects (Cohen’s d=0.68, 
p<0.001). In addition, the range of the brain age gap of the MD 
group was higher than the brain age gap of the NCF group. 
This result shows that the brain age gap could be a biomarker 
of Alzheimer’s disease progression. 
Also, we calculated the correlation between the brain age gap 
and MMSE score in the MD group and the correlation between 
chronological age and MMSE score. The correlation between 
the brain age gap and MMSE was r=-0.14 (p=0.23), while the 
correlation between the chronological age and MMSE score 
was r=0.21 (p=0.07). The negative correlation between the 
brain age gap and the MMSE score shows that a higher brain 
gap is associated with lower cognitive function. 
 Although the link between the brain age gap and the MMSE 
score was not significant, the brain age gap was a better 
predictor than chronological age. 

IV. DISCUSSION 
In this study, we predicted brain age based on the FNC 
features estimated from rs-fMRI. To the best of our 
knowledge, this is the first study that demonstrated the usage 
of  FNC in predicting the brain age gap in healthy subjects 
and mild dementia patients.  We showed that the model  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
trained based on healthy subject FNC data would better 
predict healthy subjects' brain age than mild dementia 
patients. This result proves that possibly our model could 
capture the deviation from normal brain trajectory in the mild 
dementia group. Also, we found that the brain age gap of the 
mild dementia group was significantly higher than the brain 
age gap in controls. 
Alzheimer’s disease is the most common age-related problem 
and progresses in different stages. Recent studies showed 
FNC changes obtained from rs-fMRI during the transition 
from healthy aging to Alzheimer’s disease. The current 
study's result potentially introduces the brain age gap 
estimated from FNC as a potential biomarker of Alzheimer’s 
disease progression. A similar result was shown based on the 
sMRI data [1]. We also showed that the brain age gap was a 
better predictor of the cognitive decline in mild dementia 
subjects than the chronological age based on the correlation 
between the brain age gap and MMSE. While the result was 
not statistically significant, a larger dataset may help with this.   
Theoretically, the brain age gap reflects the prediction error 
of the machine learning model. This error can be associated 
with either underlying physiology (deviation from normal 
brain mapping) or noise (lower model accuracy) [1]. A model 
trained on a bigger imaging data set with higher quality would 
increase the trained model's confidence and possibly reduce 
the noise effect. Therefore, a future study with a bigger and 
higher quality rs-fMRI dataset is needed to evaluate the 
model's accuracy. In addition, we did not separate the male 
and female subjects in the current study due to the limited 
training and test data size. A previous study showed that 
females show a lower brain age gap than males [2]. Future 
study is needed to show whether gender would affect the 
brain's predicted age from FNC. Also, comparing the results 
of sMRI feature and fMRI feature in predicting brain age is 
needed. 

V. CONCLUSION 
In this paper, we proved that FNC estimated from rs-fMRI 
could predict brain age in healthy subjects. Results also  

(a) (b) (c) 
Fig.2. Functional network connectivity (FNC) shows the correlation between any pair of independent components.  a) The average FNC 
across all normal cognitive function (NCF) subjects (N=951) in the training dataset, b) The mean FNC unseen NCF test data (N=70), c) The mean 
FNC unseen (mild dementia) MD test data (N=70). SCN: subcortical network, ADN: Auditory network, SMN: Sensorimotor network, VSN: 
Visual sensory network, CCN: Cognitive control network, DMN: Default mode network, CBN: Cerebellar network. Colorbar shows the strength 
of the connectivity.  

1638



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
showed an acceleration in the brain predicted age on mild 
dementia subjects. We also found that the brain age gap of the 
mild dementia subjects was significantly higher than the brain 
age gap of the healthy subjects. This result potentially proves 
the brain age gap as a biomarker in the progression of 
Alzheimer’s disease.  
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(a) (b) (c) 

Fig.3. Brain prediction model results. a) The scatter plot of the predicted brain age versus chronological age for the normal cognitive function 
(NCF) unseen test data (r=0.73, p=5.3e-13). The solid black line represents brain predicted age=choronological age.b) The scatter plot of the 
predicted brain age versus chronological age for the mild dementia (MD) unseen test data (r=0.33, p=0.004). c) The brain age gap of the test NCF 
and test MD dataset. The dash line represents the mean value of the brain age gap for each group. The brain age gap of MD group is significantly 
higher than that of NCF group (p<0.001). Also, MD brain age gap standard deviation is wider than that of NCF. 
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