
Integrating User-Input into Deep Convolutional Neural Networks for
Thyroid Nodule Segmentation

Rajshree Daulatabad1, Roberto Vega2, Jacob L. Jaremko2,4, Jeevesh Kapur2,3,
Abhilash R. Hareendranathan4, Kumaradeven Punithakumar4

Abstract— Delineation of thyroid nodule boundaries is nec-
essary for cancer risk assessment and accurate categorization
of nodules. Clinicians often use manual or bounding-box ap-
proach for nodule assessment which leads to subjective results.
Consequently, agreement in thyroid nodule categorization is
poor even among experts. Computer-aided diagnosis systems
could reduce this variability by minimizing the extent of user
interaction and by providing precise nodule segmentations. In
this study, we present a novel approach for effective thyroid
nodule segmentation and tracking using a single user click on
the region of interest. When a user clicks on an ultrasound
sweep, our proposed model can predict nodule segmentation
over the entire sequence of frames. Quantitative evaluations
show that the proposed method out-performs the bounding
box approach in terms of the dice score on a large dataset of
372 ultrasound images. The proposed approach saves expert
time and reduces the potential variability in thyroid nodule as-
sessment. The proposed one-click approach can save clinicians
time required for annotating thyroid nodules within ultrasound
images/sweeps. With minimal user interaction we would be able
to identify the nodule boundary which can further be used for
volumetric measurement and characterization of the nodule.
This approach can also be extended for fast labeling of large
thyroid imaging datasets suitable for training machine-learning
based algorithms.

Index Terms— Thyroid nodule detection, Thyroid nodule
tracking, Deep learning, Ultrasound image segmentation, med-
ical diagnosis

I. INTRODUCTION

Thyroid cancer is very common in North American pop-
ulations with a steady increase in the number of cases
diagnosed every year [1], [2]. In 2019, a total of 52,070
cases of thyroid cancer were diagnosed in the United States
alone [3] and it is currently the commonest cancer in women
aged between 20 and 34 [3]. Computed Tomography (CT)
[4], [5] and Magnetic Resonance Imagining (MRI) [6] have
been used for thyroid nodule assessment, however, these
modalities are expensive. Alternatively, the ultrasound is
safe, easily portable and inexpensive modality compared to
MRI and CT, hence, it can be used as a viable means for
universal thyroid cancer screening. A major concern with
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mass imaging-based screening programs is the chance of a
large number of false positives given that more than 90% of
thyroid nodules are benign [7]. Over-diagnosis often results
in needless and painful biopsies or in some cases over-
treatment. Ultrasound examination, in particular, is highly
user-dependent due to the variability in scan acquisition and
human interpretation. The American College of Radiology
(ACR) introduced the Thyroid Imaging Reporting and Data
System (TIRADS) [8] which recommends reporting five
characteristics of the nodule - echogenicity, composition,
shape, margin and presence of calcification. However, these
individual characteristics are determined manually making
it user-dependent. Artificial Intelligence (AI) techniques that
quantify the nodule with minimal user interaction can reduce
this variability in reporting. AI techniques has been an
excellent aid to radiologists [9] in general and it can be
used for early detection of thyroid cancer and for quantitative
measurement of nodule size in follow-up scans. With use of
AI techniques we can segment the nodule with high accuracy
and reliability leading to more accurate categorization of
the five nodule characteristics. However, image segmentation
from ultrasound is challenging due to specific characteristics
such as speckle noise, blurry nodule boundaries, variations
in probe position, low contrast, reflection and shadowing
effects. Manual segmentation in thyroid ultrasound images is
time-consuming, tedious and prone to user bias [4]. On the
other hand, fully automated techniques often lack precision
due to the wide variety of echogenic textures seen in nodules.
Consequently, most Computer Assisted Diagnostic (CAD)
systems for thyroid nodule segmentation are semi-automated
and use a region-of-interest (ROI) to localize the nodule.

In this paper, we develop an approach to reduce the initial
user interaction to a single mouse click. We also extend
our approach to segmentation and tracking of a nodule in
ultrasound cine sweeps which provides more complete and
three dimensional visualization of the nodules.

II. METHODOLOGY AND EXPERIMENTAL SETUP

A. Overview

An overview of our approach is given in Figure 1. The
nodule to be segmented in the ultrasound image is indicated
by the user via a mouse click. The user clicks on the
ultrasound image where the nodule of interest is present.
This click point is converted into a 4 × 4 pixel dot image
located centrally at the click as shown in Fig. 1

This dot-image is a binary image of the same size as the
original ultrasound image and has a pixel-value of 1 on the
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Fig. 1. Overview of the proposed approach for segmenting the nodule from a single 2D image (upper half of (a)) and a cine sweep (lower half of (a)).
The proposed approach requires only a single mouse click to perform the thyroid nodule segmentation across the ultrasound sweep predicting the 3D mask
for the nodule as shown above in the inference time (b).

click point and 0 elsewhere. The original ultrasound image
and the dot image are both inputs to the DL model. We
use a deeper, modified UNet model which is considered as
the baseline model for medical image segmentation tasks
and train with inputs in 2 channels, channel 1 shows the
original ultrasound image and channel 2 shows the dot-
image both resized (from 600 × 800 to 512 × 512) to fit
the UNet input shape. The final network output is a mask
indicating nodule extent in the ultrasound sweep images.
This approach is further extended to ultrasound sweep as
shown in the inference time Fig. 1 b). At the inference time,
we use the 2D-UNet output along with the ultrasound sweep
frames as input to the 3D-UNet model predicting the nodule
boundaries across the frames. We also compare our model
with the typical use case of bounding box approach where
the user provides with a region of interest as a bounding
box around the nodule (both tightly bound as well as loosely
bound with 10% margin error is experimented). Refer section
III for more details.

B. Dataset

The ultrasound images used were retrieved retrospectively
from our institution’s Picture Archiving and Communication
System (PACS). The study was approved by the human
research ethics board of the University of Alberta. We used
a total of 865 ultrasound scans for training which included
images with various categories of nodules such as cystic,
solid, mixed-cystic solid and spongiform. A separate set of
372 ultrasound images extracted from patients who were not
part of the training set was used for testing. All images
were labeled by medical experts using a web-based open-
source image segmentation software (www.dataturks.com)

and reviewed by a board certified radiologist with more than
15 years of experience.

To increase robustness to user input, we augmented the
dataset (Size = 71110) by sampling multiple click points in
the neighbourhood of the centroid of the ground-truth mask.
Also to avoid possible size bias we balanced the number of
small (less than 100 pixels), medium (100 to 300 pixels) and
large (more than 300 pixels) sized nodules in the dataset. As
a result, the model does not favour a particular nodule size
and instead predicts the nodule boundaries based on the user
click.

C. U-Net Architecture

The proposed deep neural network is based on the popular
U-Net architecture introduced in [10]. We have modified the
original architecture to adapt it to the specific task of thyroid
nodule segmentation.

Our modified U-Net accepts 512 × 512 size of input
image with two channels. The input is fed to the U-Net
encoder segment (also called contracting path). The U-Net
encoder consists of sequential and repeated application of
set of two 2D convolutional layers with no padding and
ReLU activation followed by a max pooling layer. Max
pooling reduces the image dimensions by half in each layer.
Each pair of 2D convolutional layer doubles the number
of filters starting from 32 until 2048 in our case. In total,
there are 6 such blocks in encoder followed by two 2D
convolutional layers. The output of the encoder which is of
size 8×8×2048 is fed to U-Net decoder segment (also called
expansion path of U-Net). The decoder segment consists
of sequential and repeated application of 2D convolutional
transpose (also called deconvolution) and its concatenation
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Dataset Train Test Test accuracy
accuracy accuracy segregated (S, M, L)

Augmented 91.12% 84.00% 91.19% (S), 82.62% (M), 74.4% (L)
Only Large 95.43% 80.01% - (S), - (M), 80.50% (L)
Small and Medium 91.66% 82.04% 82.87% (S), 82.89% (M), -% (L)

TABLE I
DICE SCORE RESULTS OF THYROID NODULE SEGMENTATION USING PROPOSED TWO-CHANNEL 2D-UNET APPROACH. S=SMALL, M=MEDIUM AND

L=LARGE NODULE SIZE RESPECTIVELY.

User Interaction Train accuracy Test accuracy
Zero-Click (Baseline 2D-UNet) 98.33% 60.83%
Bounding Box approach with 0% margin error 97.02% 90.34%
Bounding Box approach with 10% margin error 97.50% 83.57%
One-Click (Proposed method) 91.12% 84.00%

TABLE II
COMPARISON OF DICE SCORE RESULTS FOR THE PROPOSED ONE-CLICK METHOD WITH ZERO-CLICK AND BOUNDING BOX APPROACHES. THE

PROPOSED ONE-CLICK APPROACH YIELDED SIGNIFICANTLY MORE ACCURATE RESULTS THAN ZERO-CLICK APPROACH WHILE OFFERING SLIGHTLY

HIGHER ACCURATE RESULTS WITH REDUCED MANUAL INPUT THAN THE BOUND BOX APPROACH WITH 10% MARGIN ERROR.

with the corresponding layer in contracting path followed by
two 2D convolutional layers. The 2D convolutional transpose
doubles the image size and halves the filter size. And hence
such 6 repeated layers play the role of expansion of the input
dimensions. The output is 512× 512× 1 size consisting of
the probability of each pixel being mask. The 3D-UNet is a
modification of the 2D-UNet such that all the parameters are
same as before except for the additional third dimension in
every layer for handling 3D data. Due to increased resources
requirements for 3D UNet model(computational expense and
memory) , we resized the input sweep from 512×512×512
to 128× 128× 128.

III. RESULTS

Dice score [11] was used as metric to quantify the
performance of our segmentation models based on 2D-UNet
architecture. Dice score is defined as the ratio of the size
of the intersecting regions between predicted and ground
truth regions and total size of the two regions together.
We evaluated the accuracy separately for small, medium
and large sized nodules as summarized in Table I. The
segmentation accuracy in each sub-group improved when
the model was trained exclusively on images of that group.
Merging all the datasets together and training our model
gave an overall Dice score accuracy of 84.00%. on the test
set. Some example of the segmentation obtained from the
proposed one-click approach are shown in Figure 2. In each
figure, the ground truth is represented by the green contour
and the predicted segmentation is represented by the red
contour. The user click-point is shown as red-dot inside the
nodule. Figure 3 represents few of results from the 3D-UNet
model tracking the thyroid nodule in a sweep.

In Table II, we compare the Dice score results of the
proposed approach with the bounding box approach (Two-
click) and with the fully-automatic approach (Zero-click).

We compare our results with the segmentation obtained
from the 1) perfect tight bounding box (0% error) obtained
from ground-truth segmentation, 2) a loose bounding box
allowing 10% error from the ground-truth, and 3) the image
as is with no bounding box. As summarized in Table II our
approach gave a much higher Dice score than the zero-click
approach (60.83% vs 84.00%) and slightly higher than the
loose bounding box (83.57% vs 84.00%)

IV. DISCUSSION

We developed a new technique to segment the boundary
of the thyroid nodule using a single mouse-click and com-
pared it to existing bounding box approaches. The predicted
segmentation from the model was close to ground-truth as
shown in Figure 2. The output error was of independent of
echotexture of the nodule. The fully automatic (zero click)
approach performed poorly on the test set while a perfectly
tight ROI around the nodule gave the best segmentation ac-
curacy. However, practically defining such a tight bounding
box is difficult to achieve as there are inevitably human
errors and inter-observer variation in manually detecting
the bounding box. Detecting a precise bounding box is
particularly challenging for nodules with unclear or blurry
boundaries. Therefore, we also calculated the test accuracy
for a loose bounding box with 10% randomized error.
Our method yielded better accuracy than the segmentation
with loose bounding box and effectively reduced the user
interaction.
As future work, we plan to develop a fully automatic tech-
nique for nodule segmentation based on the proposed one-
click approach. Such an extension could be implemented by
training a network to automatically identify candidate seed
points in the image. We also plan to improve segmentation
accuracy of our approach in nodules by training multiple
networks for sub-groups of nodules using an initial non-
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Fig. 2. Sample results from 2D-UNet. The diagram shows different nodule sizes in increasing order from a) to d). Green and red color contours
represent the ground truth and prediction by the proposed 2D-UNet approach, respectively. The results demonstrate that agreement of predicted contour
with ground-truth does not depend on the composition of the nodule.

Fig. 3. Sample results from 3D-UNet showing the tracked thyroid nodule in given sweep vis-à-vis the ground truth. Green and red colors represent the
ground truth and 3D-UNet prediction, respectively.

supervised clustering technique to identify optimal image
clusters.

V. CONCLUSION

We showed that a single click from user can be used to
segment a nodule from a thyroid ultrasound image. Further,
we showed this one slice segmentation could be extended to
the whole sweep using 3D-Unet, segmenting the particular
nodule across the sweep. This segmentation can be used
for quantifying the size of the nodule and for categorizing
its risk of malignancy. We expect the proposed approach
to save expert time and reduce the variability in manual
segmentation of the nodule resulting in better thyroid cancer
care.
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