
  

 
 

Abstract— In this study, resting-state functional magnetic 

resonance imaging (rs-fMRI) data of 125 schizophrenia 

(SZ) subjects were analyzed. Based on SZ demographic 

information and cognitive scores and using an 

unsupervised clustering method, we identified subgroups 

of patients and compared DMN dynamic functional 

connectivity (dFC) between the groups. We captured seven 

independent subnodes, including anterior cingulate cortex 

(ACC), posterior cingulate cortex (PCC), and precuneus 

(PCu),  in the DMN by applying group independent 

component analysis (group-ICA) and estimated dFC 

between component time courses using a sliding window 

approach. By using k-means clustering, we separated the 

dFCs into three reoccurring brain states. Using the 

statistical method, we compared the state-specific DMN 

connectivity pattern between two SZ subgroups.  In 

addition, we used a transition probability matrix of a 

hidden Markov model (HMM) and occupancy rate (OCR) 

of each state between two SZ subgroups. We found SZ 

subjects with higher positive and negative syndrome scale 

(PNASS) showed lower within ACC and lower ACC and 

PCC connectivity (or ACC/PCC). In addition, we found 

the transition from state1 to same state is significantly 

different between two groups, while this result was not 

significant after multiple comparison tests.  

 

I. INTRODUCTION 

Schizophrenia (SZ) affects around 1% of the whole adult 

population [1], which exhibits widespread dysconnectivity. In 

recent years, functional connectivity (FC) obtained from 

resting-state functional magnetic resonance imaging (rs-

fMRI) time series has revealed a great deal of knowledge 

about these brain dysconnectivity in schizophrenia [2]. More 

recently, work has focused on the dynamics of FC or dFC [3], 

[4].  However, most of these studies focus only on comparing  
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the FC of healthy control (HC) and SZ subject, and less work 

has been done on different subgroups of SZ subjects.  

Among brain networks, the default mode network (DMN) - 

including anterior cingulate cortex (ACC), posterior cingulate 

cortex (PCC), precuneus (PCu), medial prefrontal cortex 

(mPFC), and lateral and inferior parietal cortex, has been the 

most widely studied due to its putative role in the underlying 

external monitoring, spontaneous cognition, and 

autobiographical thinking [5] and linked to mental disorders 

including schizophrenia. In this paper, to investigate the 

temporal dynamics of FC within DMN in two subgroups of 

SZ subject. We extracted seven data-driven subnodes within 

DMN. Then, we used a sliding window approach, and later k-

means clustering the dFC to identify a set of connectivity 

states [6]. Next, to investigate the temporal changes in dFC, 

we estimated the transition probability of the hidden Markov 

model (HMM) and occupancy rate (OCR) features from dFC. 

Finally, via statistical analysis on the estimated features, we 

compared two subgroups of SZ subjects.   

II. MATERIALS AND METHODS 

A. Participants 

In this study, the resting-state fMRI and clinical data of 125 

SZ subjects were from the Functional Imaging Biomedical 

Informatics Research Network (FBIRN) projects [7]. The raw 

imaging data were collected from seven sites including the 

University of California, Irvine; the University of California, 

Los Angeles; the University of California, San Francisco; 

Duke University/the University of North Carolina at Chapel 

Hill; the University of New Mexico; the University of Iowa; 

and the University of Minnesota. The written informed 

consent, approved by institutional review boards of each 

study site, was obtained from all subjects. T2*-weighted 

functional images were collected using AC-PC aligned echo-

planar imaging sequence with TE=30ms, TR=2s, flip angle = 

77°, slice gap=1 mm, voxel size= 3.4 × 3.4 × 4 mm3, and 162  
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frames, and 5:24 (min:sec). All participants were instructed to 

close their eyes during the rs-fMRI data collection.   

The demographic data and cognitive scores included age, 

gender, positive and negative syndrome scale or PANSS (P), 

PANSS (N), speed of processing (SOP), attention, working 

memory (WM), verbal learning (VerL), visual learning 

(VizL), reasoning problem solving (RPS), and computerized 

multiphasic interactive neurocognitive system or 

CMINDS_composite. The detail of the cognitive score 

collection is provided in [7]. An unsupervised clustering 

method was used to put the SZ subjects into two groups based 

on these data. Group 1 and Group 2 included 69 and 56 

subjects. Fig.1a compares these two groups. 

B. Data Acquisition 

Two scanners of TIM Trio 3T (Siemens Medical Solutions 

USA, Inc) with a 20 channel head coil on 3T scanners were 

used to collect rs-fMRI. High resolution T2*-weighted 

functional images were acquired using echoplanar imaging  or 

EP sequence with TE =27 ms, TR = 2.2 s, flip angle = 90˚, 

slice thickness = 4mm, slice gap (center-to-center) = 4 mm, 

matrix size = 64, and  field of view (FOV)= 256×256×128 

mm3. The duration of the scanning was 6 minutes.   

C. Preprocessing  

We preprocessed the fMRI data in the statistical parametric 

mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/). We 

used the Neuromark pipeline to extract reliable intrinsic 

connectivity networks (ICNs) within GIFT 

(http://trendscenter.org/software/gift) [8]. NeuroMark is a 

fully automated independent component analysis (ICA) 

framework that uses spatially constrained ICA to estimate 

comparable features across subjects by taking advantage of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 the replicated brain network templates extracted from two 

N~900 normative resting fMRI data sets. ICNs were grouped  

into seven domains based on anatomy and prior knowledge of 

their function. Using this template, we extracted seven 

components (subnodes) within DMN. These seven subnodes 

included three precunei (PCu), two anterior cingulate cortex 

(ACC), and two posterior cingulate cortex (PCC) [8]. Table 2 

shows these seven subnodes within DMN. 

D. Dynamic functional connectivity estimation 

For each subject i = 1 … N, we estimated the dFC via a sliding 

window approach. To localize the dataset at each time point, 

 we used a tapered window, which was obtained by convolving 

a rectangle (window size = 20 TRs = 40 s) with a Gaussian (σ 

= 3). Then, we calculated the covariance matrix for each 

window data to measure the dFC between ICNs. Next, we 

concatenated dFC estimates of each window for each subject 

to form a C × C × T array (where C=7 denotes the number of 

subnodes within DMN and T=137 denotes the number of 

windows), which represented the changes in brain 

connectivity between ICNs as a function of time [3]. This 

process shows in Step 1 in Fig. 1. 

 

E. Clustering and temporal modeling 

 

After calculating the dFC of each subject in both groups, we 

combined them, as shown in Step 2 of Fig.1. Then, we used a 

k-means algorithm, where k=3, to these dFC windows to 

partition the data into a set of separated clusters. We estimated 

the optimal number of centroid states using the elbow criterion 

based on the ratio of within to between cluster distance. In a 

search window of k from 2 to 9, we found that the optimal  

Fig.1.  a) Two subgroups of schizophrenia subjects identified by clustering method based on their clinical information. b) Analytic pipeline used in this 
study: Step1: The time-course signal of seven subnodes in default mode network (DMN) has been identified using Neuromark.  After identifying seven 

subnodes in DMN, a taper sliding window was used to segment the time-course signals and then calculated the functional connectivity (FC) matrix. Each 

FC matrix contains twenty-one connectivity features. Step2: We have concatenated them and then a k-means clustering with was used to group FCs to five 
distinct clusters. Step3: Then, hidden Markov model (HMM), in total nine features, and occupancy rate (OCR), in total three features, were calculated from 

the state vector of each subject. We investigated the difference between two subgroups of SZ subjects based on HMM and OCR and state-specific 

connectivity features. PANSS: Positive and negative syndrome scale, SOP: Speed of processing , WM: Working memory, VerL: Verbal learning, VizL: 
Visual learning. RPS: Reasoning problem solving, CMINDS Comp: Computerized multiphasic interactive neurocognitive system CMINDS composite.  
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number of clusters is 3. we used correlation as a distance 

metric. This step resulted in 3 matrices; each showed the center 

of each cluster and state vector of each subject, as shown in 

Fig.1b.   

Next, for each subject, we calculated the transition probability 

between states via HMM, and this probability was used as a 

latent feature of dFC. The transition probability, aij, is the 

probability of the system to transition from state j at time t to 

state i at time t+1. (Step3 in Figure 1). For each subject, nine 

HMM features were obtained from three states. Also, using 

state vector, we found the portion of time each subject spent 

in each state. We called this feature the occupancy rate (OCR) 

of each state. In total, we had three OCRs for each subject.  

 

F. Statistical Analysis 

We compared the HMM, OCR, and the DMN connectivity 

features between two groups using a two-sample t-test. In all 

statistics, p values were adjusted by the Benjamini-

Hochberg correction method for multiple comparisons [9].  

III. RESULTS 

A. Demographic and clinical difference between Group1 

and Group2 

We compared the clinical and demographic information 

between two groups using a two-sample t-test. Among all 

clinical information, we found a significant difference in 

positive and negative PANSS between the two groups. As 

shown in Fig. 1a, Group 1 showed higher positive and 

negative PANSS compared with those of Group 2 (corrected 

p<0.001). For Group1, the average of positive and negative 

PANSS was 16.5507 and 17.2754, respectively. In Group 2, 

the average positive and negative PANSS were 13.0357 and 

9.8036, respectively. Other clinical and demographic scores 

did not show any significant difference between the two 

groups. 

B. Dynamic functional connectivity states 

Fig. 2a shows the three reoccurring dFC states identified by k-

means clustering. As shown in Fig.2a, we see different 

connectivity patterns in different states. In state 1, we observed 

positive connectivity within PCu, within ACC, and within 

PCC subnodes. This state was separated from other states by 

showing negative connectivity between ACC  subnodes and 

other subnodes of DMN. This state was the only one that 

showed only positive connectivity between PCus and PCCs. 

State 2 showed both positive and negative connectivity within 

PCu subnodes. In this state, within ACC connectivity was 

positive. The connectivity between PCu and ACC, between 

PCu and PCC, and between ACC and PCC showed both 

positive and negative connectivity. In state 3, within PCu 

connectivity, and within ACC, connectivity was positive. 

While within PCC, connectivity was negative.   Similar to 

state2, this state showed both positive and negative 

 pattern in the connectivity between PCu and ACC, between 

PCu and PCC, and between ACC and PCC. 

 

C. Regional connectivity differences between Group1 and 

Group2 connectivity in each state 

To test for the DMN connectivity differences between Group1 

subjects and Group2 subjects in each state, we used two-

sample t-tests. The results are shown in Fig. 2b. Significant 

group differences passing the multiple comparison testing are 

marked by asterisks (false discovery rate [FDR] corrected, q = 

0.05). Interestingly, all states showed significant differences 

between the two groups. In all three states, we observed a 

disrupted pattern in DMN connectivity. Overall, Group1 with 

higher positive and negative PANSS showed more DMN 

connectivity is state 1 and less DMN connectivity in state 2 

and state 3 than that of Group2. In all state, within-ACC 

connectivity is significantly lower in Group1, while the 

difference between Group1 and Group2 is not significant after 

FDR correction in state 3. Within PCu connectivity of Group1 

is higher in state2 and lower in state 3.  Within PCC 

connectivity was higher in all states and but did not survived 

multiple comparison tests. The connectivity between ACC and 

PCC (ACC/PCC) was lower for Group1 in state 2 and state 3. 

 

D.  Temporal differences between Group1 and Group2 

In the next step, we compare the OCR of each state between 

Group 1 and Group 2. We did not find any significant 

difference between Group 1 and Group 2 based on their OCR 

of each state. Finally, we compared the HMM features 

between Group 1 and Group 2. Only the transition from state1 

to state 1, i.e., a11, showed a significant difference between two 

groups (uncorrected p=0.04). But this difference was not 

significant after multiple comparisons.   

 

IV. DISCUSSION 

For the first time, we explored the DMN, including PCu, 

ACC, and PCC, connectivity difference between two groups 

of SZ subjects, which showed a significant difference 

between their symptom severity. We found a lower ACC 

Fig.2.  a) Three states identified by k-means clustering method based 

on seven subnodes within DMN. The color bar shows the strength of 
the connectivity, where the blue shows negative and red  shows positive 

connectivity.  b) The DMN dFC difference between Group1 and 

Group2 subjects (Group1-Group2) in each state.  Significant group 
differences passing the multiple comparison threshold are marked by 

asterisks (false discovery rate [FDR] corrected, q = 0.05). PCu: 

Precuneus, ACC: Anterior cingulate cortex, PCC: Posterior cingulate 

cortex.  

(a) 
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connectivity of subgroup with higher positive and negative 

symptom severity. A recent study found a lower ACC 

connectivity for SZ subjects compared to healthy control 

(HC)[10]. Our new finding suggested that ACC connectivity 

might be lower in SZ subjects with higher symptom severity. 

Also, we found higher PCC connectivity for the subjects with 

higher symptom severity. However, this difference was not 

significant after multiple comparisons. This finding is 

consistent with the previous study, which showed SZ subject 

had higher PCC connectivity compared with that of HC 

subjects[11].  

In all states, we found a disrupted pattern within PCu 

connectivity by showing both higher and lower connectivity 

in subjects with higher symptom severity compared with 

those subjects with lower symptom severity. In state 1, we 

found higher PCu/PCC connectivity in Group1, while this 

connectivity was both higher and lower for Group 1 in state 2 

and state 3. Previous studies reported both increase and 

decrease in PCu/PCC connectivity [12], [13],[14] in the 

connectivity between PCu and PCC in SZ subjects compared 

with HC ones. These inconsistent results possibly could be 

focusing on static FC and averaging of the functional 

connectivity across time. Here, which showed a disrupted 

pattern of PCu/PCC connectivity, potentially highlighted the 

importance of the study of functional connectivity in a shorter 

time. In addition, we found lower ACC/PCC connectivity for 

Group 1 in two states. That means that the ACC/PCC 

connectivity is lower with SZ subject with higher positive and 

negative PANSS. This result is consistent with the result of 

the previous study, which showed SZ subjects with higher 

positive symptom score of PANSS has lower ACC/PCC 

connectivity [15].  

V. CONCLUSION 

In this paper, we investigated differences in the connectivity 

of data driven DMN subnodes of two different groups of 

schizophrenia subjects. Results showed a highly dynamic 

pattern within DMN. Schizophrenia subjects with higher 

positive PANSS showed lower ACC, higher PCC, and lower 

ACC/PCC connectivity. Also, we found a disrupted PCu/PCC 

connectivity in this network.  
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