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Abstract— The increasing complexity and memory require-
ments of neural networks have been slowing down the adoption
of AI in low-power wearable devices, which impose important
restrictions in computational power and memory footprint.
These low-power systems are the key to obtain 24/7 monitoring
systems necessary for the current personalized healthcare trend
since they do not require constant charging. In this work,
we apply Knowledge Distillation to our previously published
convolutional-recurrent neural network for cardiac arrhythmia
detection and classification. We show that the resulting network
halves the memory footprint (138 K parameters) and the
number of operations (1.84 MOp) compared to the baseline.
By using Knowledge Distillation, this network also achieves
significantly higher accuracy after quantization (increase in
overall F1 score from 0.779 to 0.828) and is capable of running
into a nRF52832 System-on-Chip from Nordic Semiconductors.
This promising result lays the groundwork for deployment
on resource-constrained embedded platforms such as micro-
controllers of the ARM Cortex-M family, thus potentially
enabling continuous detection of cardiac arrhythmias in low-
power wearable devices.

I. INTRODUCTION

Deep Learning and Wearable Devices are extremely
promising tools in the field of personal healthcare. On one
side, with the emergence of big datasets, deep learning
algorithms have achieved remarkable accuracy, progressively
replacing traditional signal processing techniques in many
application scenarios [1]. On the other side, low-power
wearable devices have a big potential for personalized health-
care [2] as they allow for continuous detection of adverse
medical conditions, disease, and emergency events [3], [4].
Note that the continuous non-interrupted monitoring plays a
key role in finding important health-adverse events, thus lead-
ing to proper and fast diagnosis, as opposed to intermittent
and on-demand monitoring mainstream devices such as the
Apple Watch [5], [6]. The main issue arises due to the fact
that deep neural networks are computationally complex and
considerably resource-demanding (e.g., memory, execution
time). Therefore, in order to implement the inference in
real time of neural networks on such resource-constrained
devices, many compromises and optimizations are required
in order to reduce the memory footprint and the computa-
tional complexity in order to achieve a real uninterrupted
24/7 monitoring during long periods of time.
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This work focuses on the continuous monitoring of cardiac
anomalies, more precisely, Atrial Fibrillation (AF) detection
on low-power wearable devices. We focus on the the System-
on-Chip (SoC) nRF52832 from Nordic Semiconductors,
which is built around an ARM Cortex-M4f core, supports
512 kB of flash and 64 kB of RAM, since it offers a low-
power consumption at a competitive price1.

AF is the most common form of cardiac arrhythmia, and
due to its paroxysmal and often asymptomatic nature [7],
a device capable of continuously acquiring the user’s elec-
trocardiogram (ECG) and processing it to detect AF would
be a great benefit for both doctors and patients. In the
recent years, progress has been made in the field of AF
detection on wearable devices, including some commercially
available devices. However, high-power consumption of the
algorithms employed is still a challenge for wearability and
24/7 continuous monitoring without recharging [8]. In our
previous work, we introduced a wearable device capable of
continuous AF monitoring from a single-lead ECG using a
convolutional-recurrent neural network [9], which was in turn
derived from a larger non-embeddable neural network [10].
Both networks were trained on a dataset provided for the
Computing in Cardiology Challenge (CinC2017) [11]. The
network in the wearable achieved, after quantization, an
average F1 score of 0.78 and a categorical accuracy of
0.85. Here, we extend upon this work to further decrease
the computational complexity and the memory footprint of
the network though a technique called Knowledge Distil-
lation [12]. This process produces a new model that is
faster to evaluate, and therefore deployable on less powerful
hardware. Moreover, the student model tends to have greater
generalization capabilities as well as a faster training. This
technique has been successfully used in several applications
of machine learning [13] such as object detection [14],
acoustic models [15], and natural language processing [16].

The paper is organized as follows. In Section II, we
describe the data that was used as well as the architecture
and implementation of the distilled neural network into an
embedded hardware. Then, in Section III, we evaluate its
performance and robustness and compare the different mod-
els in terms of accuracy, memory footprint, and efficiency.
Finally, in Section IV, we expose our main conclusions.

II. MATERIALS AND METHODS

In this section, we first introduce describe the dataset
that we used for training and validation. Then, we briefly

1https://infocenter.nordicsemi.com/pdf/nRF52832_
PS_v1.4.pdf
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show the architecture of the baseline network from [9] and
present a smaller and less complex architecture (hereinafter
‘slim network’). We then describe the quantization technique
applied to both models and finally the knowledge distillation
technique used to retrain the slim network.

A. Dataset

We used the dataset from the challenge of CinC2017 [11].
It contains 8528 single-lead ECG signals recorded with an
AliveCor device2. The signals are sampled at 300 Hz and
have duration ranging from 9 to 60 seconds. All ECG signals
are labeled with one of the following four classes: normal,
sinus rhythm, atrial fibrillation, other rhythm, and noise. The
proportion of each class in the dataset varies from 3.27% for
noise to 59.52% for normal rhythm. In Figure 1, we show
three ECG waveforms from the dataset in order to illustrate
the signals that the network uses an input. Visually, we can
observe that the normal beat (Figure 1a) is characterized
for a regular rhythm of standard PQRST complexes, AF
(Figure 1b) is characterized for irregular rhythm of standard
PQRST complexes, and finally the noise class (Figure 1c)
is characterized by random fluctuations of biopotential with
possibility random R waves. It shall be noted that the labeling
is not performed in a beat-to-beat manner. Instead, each label
is rather assigned to the whole record. This generates some
situations where a normal ECG may contain part of the
recording corrupted by noise, but the ground truth assigns
such recording to the noise class.

B. Network Architecture

1) Baseline Network: As a first approach, we employed
our network described in [9], consisting in a convolutional
block and a recurrent block. The former is a sequence of 7
1D-convolutional layers each followed by an average pooling
layer with kernel size and stride equal to 2. Each convolution
has a kernel size of 5, a padding of 2, and increasing number
of filters. The recurrent block is a Gated Recurrent Unit
(GRU) with 64 hidden units. The input signal is split into
overlapping windows of 256 samples with a 50% overlap,
then fed to the network one by one in sequence. Training is
performed using Adam optimizer and we used the categorical
cross-entropy as a loss function. This network network has
194 K parameters, and in order to process a window it
requires 3.22 million operations (MOp), which translates
into 0.09 s of execution time on the target platform (Nordic
Semiconductor’s nRF52832 SoC), using CMSIS-NN [17]
as inference engine. As already noted in [9], most of the
parameters and operations are accounted to the convolutional
block.

2) Slim Architecture: Since the most resource-demanding
part of the Baseline Network is the convolutional block, we
reduced it in order to optimize its deployment and inference
time into the selected SoC. This was achieved by reducing
the depth of some filters and compensating the potential ac-
curacy drop by adding a new layer. The resulting architecture

2https://www.alivecor.com/
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Fig. 1: Illustrative examples of some recordings from the
dataset. (top) Normal beat. (middle) Atrial fibrillation.

(bottom) Noise.

of the convolutional block is shown in Table I. Overall, the
network has 138 K parameters (from which 100 K belong
to the convolutional block), and requires roughly 1.84 MOp
(0.06 s with the aforementioned hardware/software settings).
As a consequence, it achieves an overall speed-up of 38%
and a decrease in the memory footprint of 43% compared to
the baseline.

C. Pre-Processing

The dataset was split into a training set of 7000 records and
testing set of 1528 records. The data was pre-processed as
described in [10]. To make it compatible with the sampling
frequency of a novel wearable device for ECG recording
under development in our research group, signals are resam-
pled at 122 Hz. This value showed good empirical tradeoff
between signal resolution and filter size, and consequently,
memory footprint and computational load.

D. Q-format Quantization

Quantization is a technique that allows to map weights and
activations, by default in floating-point format, into integers.
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TABLE I: Architecture of the Slim Network and parameter
count. Nw is the number of windows of the signal.

Layer Output shape Parameter count

Input (Nw , 256, 1) -
Conv1 (Nw , 128, 8) 48
Conv2 (Nw , 64, 16) 656
Conv3 (Nw , 32, 32) 2,592
Conv4 (Nw , 16, 32) 5,151
Conv5 (Nw , 8, 64) 10,304
Conv6 (Nw , 4, 64) 20,544
Conv7 (Nw , 2, 64) 20,544
Conv8 (Nw , 1, 128) 41,088
GRU (64) 37,056
Dense (4) 260

Total 138,244

The result is primarily a reduction in network’s memory
footprint, and a relaxation of computational effort, since
operations are performed in integer-only arithmetic [18]. This
approach is crucial for deployment to low power micro-
controllers, since they have limited memory and often no
native support to floating point operations. For the sake of
compatibility with CMSIS-NN, we employed a symmetric
fixed-point quantization where all the values are represented
in Qm.n format. In such quantization scheme, it follows that

q = clip(round(r × 2n))[−2m+n,2m+n−1], (1)

where q and r are the quantized and the real value respec-
tively, and m and n are the number of bits allocated for the
integer and the fractional part respectively. Experimentally,
we found that m = 2 and n = 5 are suitable values to
maintain accuracy.

E. Model Distillation

In order to improve the accuracy of the slim network,
a technique called Model Distillation is employed. The
idea, described by Hinton et al. in [12], is to use a large
network (referred to as the teacher) to train a smaller network
(the student). The purpose of this technique is to help the
student network learn faster and with more generalization
capabilities than direct training with on its own. To do so,
the teacher is first trained using the target dataset as usual.
Optionally, during this step, it is possible to set Softmax’s
temperature to a value larger than one. The Teacher is then
used to generate the predictions for each element in the
training set. Those predictions, called soft labels, are then
used while training the student, instead of the ground truth
(hard labels), to compute the loss.

In our work, our full model described in [10] is used
as the teacher. The network contains more than 1 Million
parameters, a larger input window (512 elements), and an
LSTM with 128 hidden units per gate. The teacher is trained
on the same dataset resampled at 200 Hz, using a temperature
of 1 for the Softmax, since higher temperature values yielded
poorer results. The student was the slim network described in
Section II-B trained on the data as described in Section II-C
and soft labels generated by the teacher.

III. RESULTS

Multiple performance metrics of the discussed models
are summarized in Table II. More precisely, we report the
sensitivity and F1 score metrics. The sensitivity, also known
as recall, is defined as

s =
tp

tp+ fn
(2)

where tp is the number of true positives and fn is the number
of false negatives. The F1 score is the geometric mean of
the sensitivity and precision, where the latter is defined as

p =
tp

tp+ fp
(3)

where fp is the number of false positives. In Table II, the
best performance for each model is highlighted.

A. Baseline Network & Quantization

Focusing on the baseline, the achieved sensitivity of AF
is 0.795, which remains stable after quantization, while the
F1 score, that was 0.775 in floating point precision, slightly
decreases to 0.733. Robustness to Noise is the most affected
by quantization, with a sensitivity drop of 16.6%. Overall, the
network achieves an accuracy of 0.855 (almost unchanged by
the reduced precision), and an average F1 score of 0.792, that
records a slight decrease to 0.772 after quantization.

B. Slim Network with Knowledge Distillation & Quantiza-
tion

Due to the lower parameters count, as expected the slim
network has slightly lower accuracy than the baseline net-
work in detection of AF (-3% F1 score). The other figures
are not strongly affected by the reduced size of the network.
After applying the technique described in Section II-E and
performing quantization as described in Section II-D, we
noticed an overall improvement in all the performance met-
rics, which are reported in the last column of Table II. In
particular, distillation remarkably improved AF Sensitivity
(+10.3%) and F1 score (+8.6%). Compared to the baseline
network, all figures improved. In particular, it shows a higher
F1 score of AF (+8.2%) and Other Rhythm (+5.6%), and
higher sensitivity to noise (+30%), even after quantization.
Overall, compared to the baseline the Distilled network has
higher average Sensitivity (+7,8%) and F1 score (+6.3%).

IV. DISCUSSION AND CONCLUSION

In this work, we presented an improved neural network
for continuous Atrial Fibrillation detection that can run un-
interruptedly on the low-power SoC nRF52832. The network
is optimized to low-power platforms and it is more accurate
than our network previously presented in [9]. The memory
footprint of the new network is 43% smaller, thus compatible
with devices with very limited memory space. Furthermore,
after applying Knowledge Distillation and Quantization, the
network performs better than the baseline in all metrics used
(sensitivity and F1 score), and far outperforms the baseline
in AF detection and robustness to noise. The distillation
process has allowed the slim network to obtain equivalent
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TABLE II: Detailed performance metrics of the baseline before and after quantization. The best performance metric for
each class is highlighted.

Class Metric Baseline Baseline Quantized Slim Network Slim Network
Distilled and Quantized

Normal
Rhythm

Sensitivity 0.917 0.918 0.926 0.934
F1 score 0.915 0.916 0.920 0.926

Atrial
Fibrillation

Sensitivity 0.795 0.810 0.748 0.825
F1 score 0.775 0.753 0.750 0.815

Other
Rhythm

Sensitivity 0.761 0.752 0.770 0.785
F1 score 0.771 0.760 0.781 0.803

Noise Sensitivity 0.705 0.588 0.775 0.765
F1 score 0.706 0.689 0.751 0.770

Overall Sensitivity 0.794 0.767 0.805 0.827
F1 Score 0.792 0.779 0.800 0.828

Baseline (Student)
[Faraone et al.]

Baseline Quantized

Slim Network

Slim Network
Distilled and Quantized

Teacher
[Van Zaen et al.]
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Fig. 2: Overall accuracy of the different neural networks versus the number of operations at inference time.

performance to the teacher at a fraction of computational
resources and memory requirements. This showcased the
fact that Knowledge Distillation is a suitable tool to reduce
computational load in the process of deployment of NN
to low power systems. Continuous monitoring on battery-
powered wearables is an application scenario that, as showed
in this work, could benefit from its adoption.

Future lanes of research include two major avenues. On
one side, the presented network is deployable on existing
wearable long-term monitoring systems such as the one de-
scribed in [19]. This system was conceived for the European
Space Agency for long-term monitoring of crew members.
The embedding of the neural network would provide the
system with diagnostic capabilities that were differed to
offline processing due to memory and power requirements.
Another extension avenue of this work is to increase the
number of types of cardiac anomalies that the model could
predict. For that purpose, we would base our developments
on the new open dataset of the CinC2020 Challenge3. It
includes multi-lead ECG data from the China Physiological

3https://physionetchallenges.github.io/2020/

Signal Challenge 20184 as well as a diverse population in
the USA.
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