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Abstract— Companion robots play an important role to 

accompany humans and provide emotional support, such as 

reducing human social isolation and loneliness. Based on 

recognizing human partner’s mental states, a companion robot 

is able to dynamically adjust its behaviors, and make human-

robot interaction smoother and natural. Human emotion has 

been recognized by many modalities like facial expression and 

voice. Neurophysiological signals have shown promising results 

in emotion recognition, since it is an innate signal of human 

brain which cannot be faked. In this paper, emotional state 

recognition using a neurophysiology method is studied to guide 

and modulate companion-robot navigation to enhance its social 

capabilities. Electroencephalogram (EEG), a type of 

neurophysiological signals, is used to recognize human 

emotional state, and then feed into a navigation path planning 

algorithm for controlling a companion robot’s routes. 

Simulation results show that mobile robot presents navigation 

behaviors modulated by dynamic human emotional states. 

I. INTRODUCTION 

Companion robots have been investigated to relieve social 
isolation and loneliness [1,2]. When a human partner feels 
depression, a companion robot is able to apply interaction 
schemes and fights against human’s constant feelings of 
sadness. Companion robots have shown promising prospects 
on caring people who need companion services. However, five 
ethical concerns have been raised for companion robots [3], in 
which personal privacy and freedom may be lost due to 
constant monitoring provided by a companion robot. Robot 
partners should not always give companionship, and humans 
have enough space for their personal freedom when they feel 
good without sadness feelings. Similar to therapy robots [4], 
companion robots are always-on-call for delivering 
companionship to human when they need emotional and social 
support. Robots respond to human emotional states and uses 
different interaction schemes for reducing human’s sadness 
feelings. For this reason, real-time detection and interpretation 
of human mental states is critical to successful companionship 
when caregiving service is needed. Then, social-aware robots 
are navigated to human partner and companion service is 
given. 

Mobile robot navigation has been guided by emotions to 
avoid obstacles safely and achieve goals fast [5-7]. To 
facilitate human-machine interaction in dynamic 
environments, Lee-Johnson et al. proposed a hybrid 
reactive/deliberative robotic architecture based on artificial 
emotions to support a robot’s ability to adapt to dynamic 
conditions in navigation systems [5]. The proposed artificial 
emotion mechanism has boosted adaptive performance of 
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navigation tasks with integrated control, path planning, and 
mapping, through comparing two measurements with 
emotions disabled and emotions enabled in mobile robots. A 
new navigation control system was proposed based on 
Affective Cognitive Learning and Decision Making 
(ACLDM) to safely avoid obstacles as well as speed up the 
learning process [6]. Learning and decision making are 
improved by incorporating emotion rewards in the 
reinforcement learning process, and therefore the capability of 
a robot’s autonomous navigation is also effectively improved. 
A learning classifier system as a global search method was 
used to learn the bow-tie structure of an emotional reinforcer 
for adapting a robot’s behavior [7]. The emotion system 
outperforms the default non-adapting navigation system. 

In human-robot interaction (HRI), human emotional states 
have been detected and recognized by different modalities 
including facial expressions [8], voices [9], gestures [10], and 
physiological signals [11]. HRI performance can be promoted 
using robotic emotional behavior [12 - 15]. In this work, we 
proposed a neurophysiological signal-based emotion 
recognition for navigating mobile robots in a simulated 
environment. The dimensions of valence, arousal, and 
dominance [16] are used to recognize a human partner’s 
emotion mental state and then a companion robot moves close 
to the human for companion service. The companion robot is 
not always to stay close with a human, since human privacy 
and enough space are needed. When a human feels sad, the 
companion robot moves to the human’s position with 
recognized changes of human mental states. Robot navigation 
does not follow a shortest path as traditional path planning 
does, since a human may not feel comfortable due to privacy 
and enough space needed. Therefore, robot path and moving 
speed are determined by the human’s emotion mental state, 
which is a dynamic process. For emotion-based robot 
navigation modulation, this is one of the first studies to apply 
electroencephalogram (EEG)-based brain signals for guiding 
robot motions, to the best of our knowledge.  

The remaining of the paper is structured as follows. The 
related work is given in Section II. Section III presents the 
proposed emotional state recognition and robot navigation 
strategy. The experimental results and conclusion are given in 
Sections IV and V. 

II. RELATED WORK 

A. EEG Classification in Daily Scenarios 

Brain-computer interface (BCI) technology was initially 
used for medical applications [17] such as rehabilitation of 
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stroke patients. Communication between human brain and 
external machines enables non-medical purposes [18,35] of 
BCI recently developed to have novel applications like 
workload monitoring and emotion recognition [19]. Different 
from the usage in laboratory environments, non-medical BCI 
needs dry electrodes, minimal calibration and user training, 
and portable data acquisition, so that mental state monitoring 
is feasible in daily scenarios. Non-invasive EEG-based BCI 
enables affordable and commercial data acquisition headsets 
to acquire brain signals in home or outdoor environments, and 
emotional data are collected with reduced restrictions in 
compared to the usage of expensive and non-portable EEG 
devices. For example, the DREAMER is the first database 
collected by low-cost, off-the-shelf, portable, and wireless 
devices, used in non-professional everyday life scenarios [20]. 
This builds an emotional communication way to enable 
humans and companion robots to interact with each other in 
daily life. Furthermore, for the purpose of convenient use in 
daily communication, single-channel EEG device is desired 
[21], since it is difficult to set up many electrodes on brain for 
a human subject who does daily activities. 

B. Robust Path Planning for Navigating Mobile Robot 

As a multi-objective problem, companion robot navigation 
not only provides companion support service to human 
partners, but also maintains social comfort to respect privacy 
and freedom of human partners. Based on its starting position 
and target positions, a robot plans its path based on 
environmental obstacles between its starting and target 
positions. For social-aware navigation, path planning 
algorithms can be divided into global planners and local 
planners [22]. An efficient global planner is the A* algorithm 
[23] that is deterministic by calculating distance between 
starting and target positions by minimizing the cost function: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛),                           (1) 

where 𝑔(𝑛) is the cost from the starting position to the current 
node, and ℎ(𝑛) is the heuristic function with the cheapest cost 
from the current node to the target position. However, the A* 
algorithm suffers the limitation of discrete state spaces. The 
hybrid A* algorithm [24] improved the traditional A* 
algorithm by enhancing continuous nature of the search space 
in the real world. The hybrid A* algorithm has been 
successfully applied on robust navigation of autonomous 
robots in challenging unstructured outdoor environments [25], 
where the generated paths are guaranteed to be drivable by the 
vehicle. 

III. EMOTIONAL STATE RECOGNITION AND ROBOT 

NAVIGATION 

A.  The Proposed Framework 

The framework of the proposed methodology is 
demonstrated in Figure 1. The social-aware robot detects the 
human’s emotional state in a real-time mode. Based on 
dynamic detection of human emotions, the mobile robot may 
follow the previously determined path, speed, and direction to 
approach the human partner who feels sad. When the human 
has feelings rather than sadness and does not need any 
companionship, the robot will stay far away from the human 
for providing enough space and privacy [3].  

B.  Emotional State Recognition Using EEG Signals 

Human emotions have been recognized by multiple 
modalities such as facial expressions, voices, gestures, and 
physiological data. As an innate neurophysiological signal, 
EEG-based emotion recognition cannot be faked or hidden, 
which is different from extrinsic indicators such as facial 
expressions. For this reason, EEG has been used for 
recognizing human emotions with multiple approaches [26 - 
28]. In the proposed method, EEG is used to detect human 
emotional state, as an indicator to modulate the companion 
robot’s navigation.  

 

Figure 1. The framework of the EEG-based emotion modulated robot 
navigation. 

In this simulated environment, human emotion is 
recognized based on the existing dataset DREAMER [20], 
since the proposed simulation on the DREAMER dataset 
enables emotion recognition to be implemented with cheap 
commercial, wireless, and off-the-shelf EEG headsets in 
everyday scenarios. DREAMER is different from other 
emotional EEG datasets such as DEAP [29] and MAHNOB-
HCI [30] with non-portable devices for data acquisition in 
laboratory environments. In DREAMER, EEG data were 
acquired with a sampling rate of 128 Hz by the commercial 
Emotiv EPOC headset with 14 electrodes following locations 
of the International 10-20 system. Total 23 volunteers watched 
18 film clips with 9 emotions: amusement, excitement, 
happiness, calmness, anger, disgust, fear, sadness, and surprise 
[20].  

We identify the emotion sadness as the indicator of 
loneliness, and separate sadness from other 8 emotions as a 
binary classification problem for modulating robot navigation. 
To make the companion robot have suitable response time, we 
define a time window, TW, for detecting volunteer’s emotional 
states. Power spectral densities (PSDs) are extracted in each 
time window to monitor emotional states, since it has been 
found that different bands in PSD features are correlated to 
human affective states [31]. Frequency bands of delta (1-4 
Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) are 
extracted and concatenated within 14 electrodes as feature 
vectors for classification. Although deep learning has obtained 
big success in past years, it does not appear to be effective for 
EEG signals classification, since EEG training data is limited 
[32]. According to this updated review, the shrinkage linear 
discriminant analysis (LDA) classifier [33] has been shown to 
be effective with little training data. The shrinkage LDA is 
applied in EEG classification for identifying emotional states, 
since training data is limited in existing EEG-based emotion 
recognition datasets. A regularization term is added to 
covariance matrix C of LDA: 

𝐶̃ = 𝐶 + 𝜆𝐼,                                     (2) 
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where I is the identity matrix and 𝜆  is the regularization 
parameter. 

C. Modulated Navigation for Mobile Robot 

To simulate a human-robot interaction in daily life, a 
human subject’s EEG data and features are arranged in a 
sequential order that is corresponding to 18 film clips 
presented sequentially as shown in TABLE I of reference [20]. 
Each film clip related EEG stream is divided into multiple time 
windows, TWs, which are experimentally set as 20 seconds in 
the simulation environment. Since 2 film clips (film clip ID: 9 
and 17 in the DREAMER) are related to sadness emotion, a 
modulation will be triggered if classification results in 
consecutive time windows are changed as:  

𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = {
𝐸𝑇𝑊𝑛

≠ 𝐸𝑇𝑊𝑛−1
,     𝑠𝑡𝑤𝑖𝑐ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝐸𝑇𝑊𝑛
= 𝐸𝑇𝑊𝑛−1

,   𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑜 𝑚𝑜𝑣𝑒
    (3) 

where the companion robot continues to move forward or 
backward when emotion is not changed from or to be sadness 
in two adjacent time windows. Otherwise, the robot moves 
toward the target position (the human partner’s position) if 
𝐸𝑇𝑊𝑛

= 𝑆𝑎𝑑𝑛𝑒𝑠𝑠 and 𝐸𝑇𝑊𝑛−1
= 𝑂𝑛𝑒 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 8 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠. 

The robot moves backward to its original position and stay far 
away from the human partner who does not need 
companionship, when 𝐸𝑇𝑊𝑛

= 𝑂𝑛𝑒 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 8 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠 

and 𝐸𝑇𝑊𝑛−1
= 𝑆𝑎𝑑𝑛𝑒𝑠𝑠. 

In the simulated navigation environment, a mobile robot 
locates in the corner of a living room, in which other obstacles 
including sofa, table, and TV are put in fixed positions. As 
shown in Figure 3(a), the mobile robot locates at the original 
position (green dot at the bottom right corner), where it waits 
for the response of the human partner’s emotion changes. 
When the human feels sad, the mobile robot starts to move 
forward to him/her for providing companion service. If 
human’s emotion is changed from sadness to other emotional 
states, the robot stops and reverses to the original place for 
delaying navigation time. The delayed navigation and 
companionship delivery are able to give the human enough 
space and privacy, since the human does not have sadness 
feeling and companion service is not needed. For reversing the 
direction of the companion robot, the hybrid A* path planning 
algorithm is updated by switching the target position (red dot 
on the right side of Sofa in Figure 3(a)) and the original 
position, based on which cost function 𝑔(𝑛)  and heuristic 
function ℎ(𝑛) are also re-calculated. To avoid collision with 
obstacles, a Light Detection and Ranging (LIDAR) [34] sensor 
is simulated to detect furniture locations and measure distances 
in the simulated living room. The LIDAR signals are presented 
as blue rays (3 blue regions of emitted lasers from the moving 
robot) as shown in Figure 3(b).  

IV. SIMULATION RESULTS 

A. Emotion Recognition 

The classification and robot simulation were implemented 

in MATLAB. The experimental procedures involving human 

subjects described in this paper were approved by the 

Institutional Review Board. The classification results of 

emotional EEG data are presented in Figure 2. The shrinkage 

LDA using PSD features improves the classification accuracy 

of sadness emotion from 89.27% to 99.44% for all 23 human 

subjects. Shrinkage parameter 𝜆  is critical to LDA 

classification performance, which was automatically 

estimated by the cross-validation (CV) method, since it is 

impossible to manually tune shrinkage parameters during 

real-time EEG classification. The optimal value of parameter 

𝜆  is determined by minimizing CV classification error for 

each time window of EEG data. It can be seen that 

classifications on different human subject emotional EEG 

data show different accuracies in Figure 2. This difference 

may be caused by non-stationary characteristics in EEG 

signals. 

 
Figure 2. Classification results of emotional EEG data using shrinkage LDA 

and PSD features. 

B. Simulated Social-Aware Navigation 

The navigation is simulated in an indoor living room as 
shown in Figure 3(a). Some furniture including sofa, table, and 
television are positioned inside the living room. At the bottom 
of the living room map, there are three chairs with square 
shapes. When the human feels non-sadness and does not need 
any companionship, the mobile robot locates at the original 
position at the bottom right corner of the living room. Once the 
sadness feeling is detected from the human partner, the mobile 
robot starts to navigate based on the initial path of orange line 
as shown in the “State 1” sub-figure of Figure 3(c). Without 
any emotion changes indicated in Equation (3), the mobile 
robot is moving forward along the orange line to approach the 
human partner located at the target position shown as the red 
dot. If the human emotion is switched from sadness to other 
non-sadness emotional states, the mobile robot navigation is 
modulated and the previous moving forward direction is 
reversed back to the original position for delaying navigation 
process and companionship delivery, as shown in the “State 2” 
sub-figure of Figure 3(c). The mobile robot moves back to the 
original position if non-sadness feeling is not switched to 
sadness feeling, as shown in the “State 3” of Figure 3(c). This 
navigation delays companionship delivery and offer the 
human enough space and privacy before receiving the 
companion robot’s service. 

(a)   (b) 
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(c) 

Figure 3. Simulation of the proposed EEG-based emotion recognition for 
modulating companion robot navigation. The initial path planning is presented 
in (a). Detection of furniture and measurements of distance by LIDAR (blue 
lasers) are shown in (b). In (c), switch of feelings from sadness to non-sadness 
enables the robot moves from forward direction to reversed direction until 
back to the original position, as shown in 3 sub-figures: State 1, State 2, and 
State 3. The dotted lines under the sub-figures represent EEG-based emotion 
detections with sadness (lower dotted line) and non-sadness (higher dotted 
line). 

V. CONCLUSION 

Robot navigation has been modulated by emotions for 

enhancing human-robot interaction performance in past years. 

In this work, mobile robot navigation is modulated by human 

emotions, which are recognized by brain EEG signals. Based 

on detection of human emotional states, the robot updates its 

navigation path, speed, and moving direction for delaying 

companion service and dynamically providing enough space 

and privacy for the human. In the simulated environment, 

mobile robot navigation is manipulated by dynamic changes 

of human emotions detected by neurophysiological signals. 

Since this work modulates robot navigation using EEG 

signals in simulation, future work will focus on real robot 

experiment using real-time Emotiv EPOC headset data 

acquisition and analysis. 
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