
Data-Limited Deep Learning Methods for Mild Cognitive Impairment
Classification in Alzheimer’s Disease Patients∗

Ashley De Luna1 and Roummel F. Marcia2

Abstract— Mild Cognitive Impairment (MCI) is the stage
between the declining of normal brain function and the more
serious decline of dementia. Alzheimer’s disease (AD) is one
of the leading forms of dementia. Although MCI does not
always lead to AD, an early diagnosis of MCI may be helpful
in finding those with early signs of AD. The Alzheimer’s
Disease Neuroimaging Initiative (ADNI) has utilized magnetic
resonance imaging (MRI) for the diagnosis of MCI and AD.
MCI can be separated into two types: Early MCI (EMCI)
and Late MCI (LMCI). Furthermore, MRI results can be
separated into three views of axial, coronal and sagittal planes.
In this work, we perform binary classifications between healthy
people and the two types of MCI based on limited MRI images
using deep learning approaches. Specifically, we implement
and compare two various convolutional neural network (CNN)
architectures. The MRIs of 516 patients were used in this study:
172 control normal (CN), 172 EMCI patients and 172 LMCI
patients. For this data set, 50% of the images were used for
training, 20% for validation, and the remaining 30% for testing.
The results showed that the best classification for one model was
between CN and LMCI for the coronal view with an accuracy
of 79.67%. In addition, we achieved 67.85% accuracy for the
second proposed model for the same classification group.

I. INTRODUCTION

Mild cognitive impairment (MCI) is a condition where
individuals experience a decline in their mental and cognitive
abilities. It is the intermediate stage before the development
of Alzheimer’s disease (AD) and other types of dementia.
Although MCI does not always transition into AD, an
early diagnosis of MCI could benefit those individuals, their
families, and governments on a social and financial level.
A study found that if all AD patients were diagnosed in
the early stages, it would save a total of $7 trillion to $7.9
trillion [1]. Also, once an individual is properly diagnosed
with MCI, they and their family have a better timeline for
social, financial and medical decisions.

MCI is the phase between pre-clinical AD and the more
serious decline of dementia due to AD. A person with MCI
will have symptoms evidence of Alzheimer’s brain changes,
such as subtle problems with mental and cognitive abilities.
Other typical symptoms of those with MCI are memory loss
or speech difficulties. For some, these symptoms may not
interfere with everyday activities, while for others that do
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develop memory and cognitive issues, the brain can no longer
compensate for the damage cause by AD [2].

Considering those with MCI, one study found that after
two years’ follow-up, 15% of individuals older than 65
have developed dementia [3]. Another study found that 32%
of individuals with MCI developed Alzheimer’s dementia
within five years’ follow-up [4]. Lastly, a third study found
that individuals who were tracked for five years or more,
38% developed dementia [5]. However, there are cases where
individuals with MCI revert back to normal cognition or
remain stable. Current research goals focus on properly
identifying individuals with MCI since they are more likely
to develop AD.

MCI is divided into early MCI (EMCI) and late MCI
(LMCI). Due to the similarities between healthy and MCI
brain images, the classification between EMCI and normal
aging brains remains a challenging and critically important
problem. In this paper, we propose using machine learning
techniques for classifying images from patients who poten-
tially have MCI in a limited-data setting.

Brain imaging methods, such as magnetic resonance imag-
ing (MRI) have become a significant tool in the diagnosis of
MCI and AD. There is a morphological difference between
the control normal, EMCI and LMCI in the hippocampus
region of the brain that is viewed in MRI images [6]. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) is the
database used to acquire the MRI images for this study. In
addition, the statistical parameter mapping software allows
us to observe the variance in brain structure and function by
studying the biomarkers in brain images based on the gray
matter extracted from MRI images. Then, we will use and
compare two different convolutional neural networks (CNNs)
to classify between individuals into control normal, EMCI or
LMCI.

A big challenge in the field of machine learning is the
amount of data available, especially in medical imaging,
where data are often very limited. Estimating the minimum
amount of data required for a model to accurately make
predictions is difficult, which is why investigating the classi-
fication accuracy of MCI in data-limited settings is crucial.

Related work. Numerous work exists in literature on MCI
classification using machine learning, including [7], [8], [9],
[10], [11], [12], [13], [14]. The overview paper [15] states
that machine learning approaches for predicting dementia
risk is “not yet ready for routine use,” but this assessment
only considered methods developed between 2006 and 2016.
More recent work includes [16], where a convolutional
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neural network is used to perform two-dimensional MRI
classification of mild cognitive impairment. In addition, there
are some works that perform using a different kind of
neural network for non-binary classification. For instance,
in [17], Korolev et al. study three-dimensional MRI with a
recurrent neural network and a CNN for multi-classification
of Alzheimer’s disease, mild cognitive impairment and nor-
mal brains. Furthermore, in [18], Mehmood et al. propose
using a Siamese CNN for three-dimensional MRI multi-
classification of Alzheimer’s disease. Lastly, other related
works include the classification using positron emission to-
mography (PET) scans instead of MRI scans, such as in [19],
where Forouzannzhad et al. study the classification MCI with
three-dimensional PET scans using a CNN. In this paper, we
propose using two different convolutional neural networks
for MRI classification with limited two-dimensional data,
where the dataset consists of two-dimensional slices along
the axial, coronal and sagittal anatomical planes.

II. DATA

The data accessed for this project was acquired from the
ADNI database, which is publicly available here: http:
//adni.loni.usc.edu/. Created in 2004, the ADNI
database has since continued its innovation for early detec-
tion and to identify ways to track the Alzheimer’s diseases
progression with biomarkers. It is funded by the National
Institutes of Health with the purpose to support advances in
AD research.

A. Pre-processing

The format of the downloaded MRI images from the
ADNI database are the Neuroimaging Informatics Technol-
ogy Initiative (NIfTI) files. It is important to note that the
data image types downloaded are semi-processed, meaning
that the images are aligned and centered and not the original
raw MRI data. This is important because the additional pre-
processing in this study will not be possible on the original
data since they are not properly aligned.

The MRI can be viewed as two dimensional orthogonal
projections of the brain (i.e. coronal, sagittal, and axial (see
Fig. 1)). The software Statistical Parametric Mapping (SPM)
was used for the pre-processing of the neuroimages. For
this part of the pre-processing, the most current version of
SPM12 [20] in unison with MATLAB(2019b) was used.
Other alternatives such as Freesurfer and Ants could have
been used. The three main steps of the pre-processing are
segmentation, normalization and finally smoothing.
Segmentation. The first part of the pre-processing is known
as segmentation. The 3D MRI images can be classified into
different tissues types. The tissue types are defined based on
the tissue probability maps (TPM) provided by SPM12. This
can be found in SPM - tpm/TPM.nii, which is a multivolume
NIfTI file (one volume for each of the 6 tissues classes).The
TPM reflect the probability of a voxel, which represents a
value on a regular grid in three dimensional space, belonging
to each tissue class based on the segmentation of a large
number of young adult brains that have been normalized to

(a) Axial plane (b) Coronal plane (c) Sagittal plane

Fig. 1: Two dimensional orthogonal projection of MRI
images before being preprocesed.

standard space. The order of the tissue is the following: gray
matter, white matter, cerebral spinal fluid, bone, soft tissues
and air/background. The features in brain images used to
distinguish between AD, MCI and healthy brains are gray
matter, white matter and cerebrospinal fluid. For this study
we will focus on gray matter. Research shows that gray
matter measurements can be detected in brain alterations
that are associated with cognitive impairment [21]. After
segmentation, a native-space image is produced that reflect
the voxel’s probability of belonging to the gray matter tissue
class (Fig. 2(a)).

In order to complete segmentation through SPM12, the
bias regularization is set on the light regularization (0.001),
the bias full width at half maximum is set on the 60 mm
cutoff, and the affine regularization on the International
Consortium of Brain Mapping space template. Lastly, for
the spatial normalization of the data to the Montreal Neuro-
logical Institute (MNI) spaces, the deformation field was set
in the forwarding mode.

Normalization. After segmentation, the GM images were
further analyzed with the next step (normalization), as seen in
Fig. 2(b). Before SPM12, spatial normalization was based on
minimizing the mean squared difference between a template
and a warped version of the image. Now, spatial normaliza-
tion involves warping all the segmented images to the same
space, which is achieved by matching to a common template.
The TPM defines the space that the segmented images will be
warped to. This process produces a deformation field image
file (y *.nii), which records the non-linear transformation
between spaces. During the non-linear transformation, it is
calculated how the image should move and shrink or expand
to fit the template. Thus, the deformation field contains three
image volumes encoding the x, y, and z coordinates (in mm)
of where each voxel maps to in the standard space. In order to
normalize the GM images to MNI space, we set the written
normalized images voxel size on 2 × 2 × 2 mm and the
interpolation to the 4th Degree B-Spline.

Smoothing. The final pre-processing step is smoothing
(Fig. 2(c)), which is completed in order to increase signal
to noise ratio (SNR) and the ability of statistical techniques
to detect true and task related changes in the signal. All nor-
malized GM images were set with the Gaussian smoothing
kernel set to 2× 2× 2 mm.
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Fig. 2: The three pre-processing phases.

The original size of the data was 176× 240× 256. After
segmentation the dimensions of the image remain the same.
Then, after the normalization process, all the GM images
were reduced to the size of 79 × 95 × 79. The dimensions
were reduced but the amount of information is retained.
In particular, the pixel resolution of the images were not
downsampled. Rather, empty spaces that did not contain any
information were excised.

B. 2D MRI Data

Now, the preprocessed 3D MRI NIfTI images are sliced
into 2D portable network graphics (PNG) images for the
model using MATLAB (2019b). We sliced the 3D MRI
images into 2D MRI images along the three planes: axial,
coronal and sagittal planes and resized them to 64×64 pixels
to be used for the convolutional neural network.

Depending on the anatomical plane, we consider what we
believe is the appropriate range of slices of the brain for the
model. For example, in the axial plane, the top and bottom
portion of the brain will not show a significant difference
between healthy brains and those with MCI. Also, in the
coronal plane and sagittal plane, the same consideration is
applied for the front/back and left/right sides of the brain,
respectively. Since we want to study the classification of
MCI under data limitations, we choose a small range of
images per plane. Therefore, we selected 20 images of each
plane; a total of 60 images were considered per subject. The
respective slices for each plane are shown in Fig. 3 through
the various anatomical plane points-of-view (PoV). We make
the assumption that this range of images will allow us to
appropriately differentiate between CN, EMCI and LMCI.

(a) Axial slices (b) Coronal slices (c) Sagittal slices
from sagittal from sagittal from coronal
plane PoV plane PoV plane PoV

Fig. 3: MRI image slices from various points-of-view (PoV).

C. Patient Data

For this study, we obtained a total of 516 subjects: 172
EMCI, 172 LMCI and 172 control normal subjects. The
demographic information of all the subjects of the three
groups are shown in Table I, where F and M are the number
of females and males, respectively.

TABLE I: Demographic charateristic of the 172 subjects for
each group.

Control Normal Early MCI Late MCI
90 F / 82 M 76 F / 96 M 77 F / 95 M

Age Mean SD Mean SD Mean SD
76.1 6.9 71.3 7.7 72.3 7.5

Then, 10,320 images were used from each of the three
planes: axial, coronal and sagittal from each group (CN,
EMCI, and LMCI) for a total of 36,000 images used in
the study. Additionally, the images were separated as 50%
images used for training, 30% images used for testing and
20% images used for the validation set.

III. PROPOSED APPROACHES

In this paper, we performed a binary classification between
Control Normal (CN), Early MCI (EMCI), and Late MCI
(LMCI) within each of the axial, coronal and sagittal planes.
We applied deep learning approaches that used two different
convolutional neural network models described in the fol-
lowing sections The parameter values used in the CNNs are
standard values for the given image sizes.

A. Model I: Simple CNN

The first model we considered is a variation of the model
found in [16]. It is composed of three convolutional layers
with max pooling between each layer. For the first convo-
lutional network, the 32 filters with a kernel size of 3 × 3
and a max-pooling kernel size set on 2× 2 were considered.
The second and third layer consists of 128 and 512 filters
respectively, followed by the same max-pooling kernel size
from the first layer. Throughout all the convolutional layers,
ReLU was used as the activation function. Then, a fully
connected network with 128 input neurons and a ReLU
activation function was used. Finally, a sigmoid activation
function was used to conduct the binary classification. The
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model is compiled with the Adam optimizer [22] with a
learning rate of 1 × 10−4. A binary cross entropy function
was used to measure the performance of the model. The
batch size was set to 128 images and used 100 epochs for
the CNN.

B. Model II: VoxCNN

For the second model, we considered the VoxCNN in two-
dimension, which is similar to the model found in [17]. This
model is composed of four volumetric convolutional blocks
of 8, 16, 32 and 64 filters, followed by the same max pooling
in between, along with ReLU used as an activation function.
After, a fully connected network with 128 input neurons
and a ReLU activation function were used. Then, a batch
normalization followed by a dropout with a probability of
0.7 were used (see [23]). Finally, a fully connected layer
with 64 input neurons followed by a softmax activation
function. In addition, we define a kernel initializer as the
glorot uniform and a bias initializer of zeros for initializing
the layer’s weights throughout the network. This model was
also compiled with the Adam optimizer using a learning rate
of 2.7×10−6 and a binary cross entropy function to measure
the performance. The batch size for this model is set to 5
for 50 epochs.

IV. NUMERICAL EXPERIMENTS

In this section, we define the experiments that were con-
ducted using the models described in the previous sections.

Experiment A: Control Normal/Early MCI Classification.
In this experiment, we classify images from Control Normal
and Early MCI patients along the three different MRI planes:
axial, coronal and sagittal. This first experiment classifies
between the first two stages leading to dementia. A high
performance for this experiment would be crucial for early
detection of Alzheimer’s disease.

Experiment B: Control Normal/Late MCI Classification.
In this experiment, we classify images from Control Normal
and Late MCI patients along the three different MRI planes.
For this second experiment, there should be a bigger differ-
ence between the first stage of the healthy brains and the third
stage of LMCI. Therefore, we should expect a noticeable
different in the classification for this second experiment.

Experiment C: Early MCI/Late MCI Classification. In
this experiment, we classify images from Early MCI and
Late MCI patients along the three different MRI planes. In
this third experiment, we study the distinction between the
early and late stages within the MCI phase.

A. Performance Measurements

The performance of each model will be evaluated using
five metrics which use the following values:

• True positive (TP): the total number of positive classi-
fications that are correct;

• True negative (TN): the total number of negative clas-
sifications that are correct;

• False positive (FP): the total number of positive classi-
fications that are incorrect;

• False negative (FN): the total number of negative clas-
sifications that are incorrect.

The five metrics that we use are as follows:
1) Accuracy: The percentage of the whole sample size

that are correctly classified:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100

2) Specificity: The percentage of the total sample that are
negative that are correctly classified:

Specificity =
TN

TN + FP
× 100

3) Recall: The percentage of the total sample that are
positive that are correctly classified:

Recall (R) =
TP

TP + FN
× 100

4) Precision: The percentage of the positive classifications
that are correct:

Precision (P) =
TP

TP + FP
× 100

5) F-score: The harmonic mean of precision and recall:

F-score = 2 × P × R
P + R

× 100

Experiment A is the binary classification of CN and EMCI,
while Experiment B is the binary classification of CN and
LMCI. Thus, for Experiments A and B, we define true
positive as the number of EMCI or LMCI subjects who
were correctly classified. Then, we define true negative as the
number of healthy brains correctly classified as CN. The false
positive is defined as the number of CNs that are classified
as EMCI or LMCI. Finally, the false negative is defined as
the number of EMCI or LMCI classified as CNs.

For Experiment C, we define true positive as the number
of EMCI correctly classified. Furthermore, true negative is
defined as the number of LMCI correctly classified. Then,
false positive is the number of LMCIs classified as EMCIs
and false negative is defined as the number of EMCIs
classified as LMCIs.

V. RESULTS

In this section, we present the results and analyze the
three numerical experiments in Sec. IV using the five metrics
described previously.

Experiment A: CN/EMCI Classification. The results for
this experiment can be found in Table II, where we can see
that Model I outperforms Model II in all metrics along the
three anatomical planes. Furthermore, in Model I, the coronal
plane provides the highest values for all five performance
measures, while in Model II, the coronal plane present the
highest values in only three out of the five metrics. The
highest accuracy values of 78.90% for Model I and 66.69%
for Model II were achieved along the coronal plane.
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The performance results among Model I are all fairly sim-
ilar. Along the coronal plane, we have the highest specificity
at 79.30%. The specificity reflects how many CN cases were
classified correctly. Therefore, the higher the specificity, the
fewer normal subjects were classified as EMCI. We also
have a relatively high values in recall (78.49%) and precision
(79.39%) for the coronal plane, which means our first model
is able to detect and discriminate the differences between
healthy brains and EMCI better along this plane.

For Model II, the performance results are not as consistent
as for Model I. As stated above, only three out of the five
metrics rank the highest for the coronal plane. The sagittal
plane ranks significantly higher in the other two measures
(specificity and precision), which indicates that more images
of healthy brains were correctly classified and that among
those images labelled as EMCI, a higher percentage was
correctly classified. However, the relative low recall value
for the sagittal plane indicates that a higher number of false
negatives were obtained. This means that a greater number
of EMCI brain images were incorrectly classified as healthy,
which can have deleterious medical diagnosis consequences.

TABLE II: Experiment A performance measure results for
CN/EMCI classification using Simple CNN (Model I) and
VoxCNN 2D (Model II) along three different MRI planes.

MRI Accur. Spec. Rec. Prec. F-Sc.
Views (%) (%) (%) (%) (%)

Model I
Axial 76.57 75.27 77.87 75.96 76.86

Coronal 78.90 79.30 78.49 79.39 78.77
Sagittal 77.07 79.05 75.10 78.30 76.58

Model II
Axial 65.85 66.72 64.98 66.47 65.45

Coronal 66.69 66.30 67.07 66.61 66.74
Sagittal 66.21 75.15 57.27 70.36 62.58

Experiment B: CN/LMCI Classification. The results for
this experiment can be found in Table III, where we see that
Model I outperforms Model II in all metrics along the three
anatomical planes. As in Experiment A, the coronal plane
shows a higher range in all five metrics for Model I. On
the other hand, Model II has a higher range in the coronal
plane for three out of five metrics, similar to Experiment
A. Additionally, the coronal plane also has higher accuracy
compared to the other anatomical planes. The classification
of CN and LMCI for the coronal plane results in a high
accuracy of 79.67% for Model I compared to the highest
accuracy of 67.85% obtained for Model II.

While the performance measures from Model I are similar
overall, there are some metrics that are more pronounced than
others. The results indicate a relatively very high specificity
value of 82.44% for the coronal plane, which indicates that
fewer healthy brains were misclassified as LMCI. In addition,
among those images that are labelled as LMCI, a relatively
very high percentage (81.50%) was correctly classified. The
increase in specificity and precision can be attributed to
a greater anatomical difference between the first stage of
healthy brains to the third stage of LMCI.

As in Experiment A, we see an inconsistency in the
performance measures for Model II compared to Model I,

and only three out of the five metrics rank the highest for
the coronal plane. Model II shows similar results regarding
relatively high specificity and precision values for the sagit-
tal plane. Interestingly, there is a slight decrease in these
values compared to those in Experiment A, while there are
improvements within the other metrics (accuracy, recall, and
F-score).

TABLE III: Experiment B performance measure results for
CN/LMCI classification using Simple CNN (Model I) and
VoxCNN 2D (Model II) along three different MRI planes.

MRI Accur. Spec. Rec. Prec. F-Sc.
Views (%) (%) (%) (%) (%)

Model I
Axial 77.17 80.04 74.30 78.84 76.48

Coronal 79.67 82.44 76.90 81.50 79.06
Sagittal 77.45 79.09 75.81 78.48 77.04

Model II
Axial 67.02 65.58 68.45 66.96 67.16

Coronal 67.85 66.24 69.47 67.81 68.12
Sagittal 67.41 72.71 62.11 69.76 65.38

Experiment C: EMCI/LMCI Classification. The results
for this experiment can be found in Table III. Just like
Experiments A and B, Model I surpasses Model II for all
metrics for all three planes. However, unlike the previous
experiments, Model I has a higher value in the coronal plane
for four out of five metrics while Model II has a higher
range in the coronal plane for all five metrics. Note that the
coronal planes has a higher accuracy compared to the axial
and sagittal planes for both models.

For Model I, the performance measure values are similar
to each other. For the metric where the coronal plane did not
provide the highest value (recall), it was a very close second:
77.56% for the coronal plane versus 77.77% for the sagittal
plane. For both models overall, the measurement values are
lower compared to Experiments A and B. This decline in
performance metrics can be attributed to EMCI and LMCI
patients having more similar brain image characteristics than
for those patients in the other experiments.

TABLE IV: Experiment C performance measure results for
EMCI/LMCI classification using Simple CNN (Model I) and
VoxCNN 2D (Model II) along three different MRI planes.

MRI Accur. Spec. Rec. Prec. F-Sc.
Views (%) (%) (%) (%) (%)

Model I
Axial 74.36 74.07 74.65 74.27 74.43

Coronal 77.02 76.47 77.56 76.86 77.10
Sagittal 76.82 75.87 77.77 76.49 76.99

Model II
Axial 62.41 61.69 63.14 62.30 62.53

Coronal 64.76 63.41 66.10 64.64 64.99
Sagittal 63.35 62.31 64.40 63.31 63.51

Summary. The results for the dataset considered show that
the simpler CNN architecture (Model I) outperforms the
more sophisticated CNN (Model II). Additionally, the classi-
fication performance improves when comparing images from
stages that are farther apart (CN and LMCI). Furthermore,
the coronal plane has the highest accuracy between the
axial and sagittal planes in all three experiments for both
Model I and Model II, while the axial plane had the lowest
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percentages for the performance measurements out of the
three anatomical planes. We performed the experiments with
the assumptions that the dataset acquired characterized a
noticeable difference between the baseline of healthy brains
and brains diagnosed with MCI. These results tells us that
there was less information for the classification of each
brain present in the axial slices compared to the coronal and
sagittal planes in these experiments.

VI. CONCLUSIONS

The study of mild cognitive impairment is critical for
the early diagnosis of Alzheimers disease. Therefore, an
accurate and reliable diagnosis of MCI will aid in identifying
those individuals at an increased risk of the progression
to dementia. In recent years, deep learning has contributed
to solving such complex problems. Thus, a convolutional
neural network can provide important information to classify
between CN, EMCI and LMCI patients.

In this paper, we applied two different classification meth-
ods to investigate the performance of two-dimensional MRI
images under data quantity limitations. Additionally, we
studied the binary classifications of CN, EMCI and LMCI
with regard to the three anatomical planes: axial, coronal and
sagittal. We performed a thorough analysis to gain insight
into what the proposed models had learned. The best results
were achieved for the classification of CN and LMCI for the
coronal plane. Overall the results indicate that the simpler
CNN architecture outperforms a more sophisticated CNN
under a limited dataset.
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