
  

Abstract—-Background: To realize precision medicine, it is 

important to realize the detection of the individual atrophy of 

Alzheimer's disease (AD) patients. Our objective is to find 

individual brain regions of interest (ROIs) in AD patients via 

an unsupervised deep learning network. 

Methods: This study used structural Magnetic Resonance 

Imaging (sMRI) scans with the 732 healthy control (HC) 

subjects and 202 AD patients from the Alzheimer’s disease 

Neuroimaging Initiative (ADNI), and the 105 HC subjects 

were collected at the Xuanwu Hospital. An unsupervised deep 

learning network based on Adversarial Autoencoders (AAE) 

was proposed to delineate the individual atrophy of AD 

patients. In the proposed model, Variational Autoencoders 

(VAE) and Generative Adversarial Networks (GAN) were 

combined to learn the potential distribution and train a 

generator. In this step, the 530 HCs from ADNI were applied 

as the training dataset and the 105 HCs from Xuanwu 

Hospital were applied as an external validation dataset. The 

structural similarity (SSIM) was used to judge the robustness 

of the proposed model. Then, ROIs of the 202 AD patients 

were detected. In order to verify the clinical performance of 

these ROIs, other 202 HCs were selected from ADNI and a 

multilayer perceptron (MLP) was used to classify AD versus 

HC by 5 folder cross-validation. In the comparative 

experiments, we compared our model with three other 

previous models. 

Results: The SSIM reached 0.86 in both training and 

external validation datasets. Eventually, the classification 

accuracy of our model achieved 0.94±0.02. In the meanwhile, 

the classification accuracies were 0.89±0.01, 0.85±0.04 and 

0.91±0.03 for the three previous methods. 

Conclusion: Our deep learning model could detect 

individual atrophy in AD patients. It may be a useful tool for 

AD diagnosis in clinics. 
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I. INTRODUCTION 

Alzheimer's disease (AD) is the most common 
neurodegenerative disease in the world. It is primarily 
characterized by progressive memory loss and accompanied 
by several kinds of cognitive and functional impairment. As 
an important clinical tool, magnetic resonance imaging 
(MRI) has been used to reflect the brain structure and 
characteristic cerebral changes noted in AD. 

AD patients are with individual variations, therefore it is 
important to acquire individual atrophy morphometry 
information. Currently, a few MRI imaging markers were 
proposed. One example is hippocampus atrophy. The 
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hippocampus volume is the gold standard to detect atrophy, 
but it is costly and time-consuming because of the necessity 
of professional physicians and manual selection of the 
region of interest (ROI)(1). Alternatively, automatic 
segmentation tools such as voxel-based morphometry 
(VBM)(2) were required(3). However, these methods were 
based on group analysis or the templates, which made it 
difficult to identify the precise individual atrophy.  

Recently, to realize the detection of individual atrophy, 
machine learning and deep learning methods have been 
applied. For instance, Raouia Ayachi and Nahla Ben Amor 
et al., detected tumors by Support Vector Machines 
(SVM)(4). D. Zikic used context-sensitive classification 
forests(5). Moreover, many popular deep learning models 
such as Generative Adversarial Networks (GAN) were also 
applied to segment tumors in brain MRI images (6). 
However, previous methods could hardly be applied to 
atrophy detection. To our knowledge, studies on detecting 
individual atrophy in AD patients are still immature. 
Therefore, this study proposed a novel unsupervised deep 
learning model based on Adversarial Autoencoders 
(AAE)(7). This novel model was trained by MRI data of 
healthy controls (HCs). Using the MRI data of AD patients 
as the inputs, our model reconstructed the MRI images, and 
automatically calculated the residual images between the 
original and reconstructed images. The residual images were 
considered as the individual atrophy ROIs. In order to verify 
the diagnosis performance of the individual atrophy, we 
generated a new residual mask as the Regions of Interest 
(ROI), extracted ROI images from the AD and HC groups, 
and calculated the classification accuracy of ROI images. 
We also compared the classification results of our method 
with three previous methods.  

II. MATERIALS AND METHODS 

A. participants and preprocessing of sMRI images 

The data of this study were from the Alzheimer’s disease 
Neuroimaging Initiative (ADNI) and Xuanwu Hospital, 
Capital Medical University, Beijing, China. ADNI is a 
longitudinal multicenter study designed to develop clinical, 
imaging, genetic, and biochemical biomarkers for the early 
prediction and tracking of Alzheimer’s disease. The sMRI 
images of 530 HCs from ADNI were used to train the AAE 
model and the 105 HCs from Xuanwu Hospital were served 
as an external validation group. The 202 AD subjects and 
matched number of HC subjects randomly selected from 
ADNI were used in the classification task. Tab. 1 showed 
the demographics and characteristics of all data. The data in 
column 1 and column 2 are used for model training and 
validation while the rest from ADNI are applied in 
classification. There were significant differences between 
HC and AD patients in age, education, Mini-mental State 
Examination (MMSE) and APOE4 gene information 
(p<0.005)  
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Table 1. DEMOGRAPHICS AND CHARACTERISTICS  

 ADNI Xuanwu     ADNI 

HC 

(n=530) 

HC 

(n=105) 

AD 

(n=202) 

HC 

(n=202) 

P-

value 

Age 73.99±1.10 66.75±4.90 74.75±8.15 73.99±6.18 <0.005 

Sex 281/249 69/36 123/77 115/87 0.125 

Education 16.38±2.73 12.28±3.12 15.58±2.77 16.24±2.66 <0.005 

MMSE 29.10±1.10 28.75±1.5 23±2.23 29.10±1.12 <0.005 

APOE4 160(30.21%) 31(29.52%) 135(66.85%) 71(35.14%) <0.005 

Note: Age and MMSE are given as mean ± standard deviation, Gender is given as Female/Male, 
APOE4 is given as the number of carriers (percentage). An independent two-sample two-tailed t-
test is conducted for quantitative variables and the variables are maintained consistent. 

 

The preprocessing of sMRI images mainly included the 
following steps: 1. We converted the DICOM format into a 
3D image in the Neuroimaging Informatics Technology 
Initiative (NIfTI) format using the DCM2NII 
(https://people.cas.sc.edu/ rorden/mricron/dcm2nii.html) tool; 
2. All volumes were spatially normalized to the Montreal 
Neurological Institute(MNI) template by Statistical 
Parametric Mappin (SPM8; https://www.fil.ion.ucl.ac.uk/ 
spm/ software/spm8) voxel size is 2x2x2; 3. The whole brain 
template was used to eliminate the interference of noise in 
the background 4. To accelerate the model solution, the 
voxel values of the images were normalized into -1 to 1; 5. 
The three-dimensional images were sliced from the axial 
direction and interpolated to a size of 128*128 in order to 
meet the input requirements of the deep learning model. 

B. Framework of this study 

Fig.1 showed the framework of this study. The left part 
showed the schematic of the deep learning framework. The 
reconstructed images and residual images could be 
automatically generated as the outputs. The right part 
showed the structure of the classification model. With the 
generated ‘residual mask’, the pixels in ROIs were selected 
to feed into the Multilayer perceptron (MLP) classifier for 
the classification task. 

C. Deep learning model 

The sMRI images of 530 HCs from ADNI were used to 
train the AAE model. For the characteristics of AD atrophy, 
the unsupervised deep learning model was realized by two 
stages. In the first stage, an AAE network was trained to 

extract the data characteristics of HC images 𝑥ℎ ∈ 𝑋𝑑∗𝑤∗ℎ, 
which was represented as a predetermined standard 
distribution P(z). Then, a reverse process was applied to 
decode the latent distribution with its original image. The 
robustness of this step can be judged by the loss of model 
and structural similarity (SSIM), which is an index to 
measure the similarity of the generated image and its input 
image. In the second stage, images of patients with AD were 
fed into the model. For that our model was only trained with 
HC images, the AD images were reconstructed as HC 
images. As a result, the individual atrophy could be 
generated by calculating the residual images between the 
original and reconstructed images. 

Deep learning model construction. The AAE network 
used in this method consisted of one GAN and one 
autoencoder network(8). This network was an improvement 
of traditional Variational Auto-encoder (VAE). The formula 
of optimization can be expressed as_(1) 

      min
         G

max
𝐷

𝑉(𝐷, 𝐺) = Ez~P(z)[logD(z)] +

                     Ex~P(𝑥ℎ) [log (1 − D(G(x)))]                (1) 

We used Jensen-Shannon (JS) divergence to align the 
implicit variable z to prior P(z) rather than traditional 
Kullback-Leibler (KL) divergence. JS divergence was useful 
to solve the primary problems of VAE, such as sparse 
manifolds or coarse reconstructions after dimension 
reduction. 

As shown in Fig.1, the GAN consisted of two parts: a 
generative model G, and a discriminative model D. G was 
used to approach the real data with a lower dimension latent 
code z and D was used for distinguishing the generated data 
from the real data. This employment reached the state of 
"Nash balance" in the process of alternative optimization. 

To improve the poor expression ability of the original 
network, the Resnet structure was applied to the generator in 
our model. The encoder and decoder both consisted of one 
convolution layer and five Resnet blocks. Additionally, the 
usage of the Batch Normalization (BN) layer solved the 
problems of gradient disappearance and gradient explosion. 
Then, an additional regularization was proposed with an 
extra loss shown as |zo − zg|2  to keep the generator 

restoring the original features as more as possible. In the 
training step, the learning rate was set as 0.0002, the batch 
size was 32. Furthermore, the t-distributed Stochastic 
Neighbor Embedding (TSNE) distribution was used so that 
the distribution relationship between the generated image 
and the input image could be roughly observed.  

Validation of the deep learning model. To test the 
robustness of our model, MRI images of 105 HC subjects 
from Xuanwu hospital were used as an external test group. 
The mean SSIM was calculated as the index to judge the 
effectivity of our model. Both SSIM values from the training 
group and test group were calculated in this study with 5 
folder cross-validation in1000 times. 

Visualization of residual images for AD patients. To 
visualize residual images and remove noise, the density-
based spatial clustering of applications with noise 
(DBSCAN) cluster method was applied, in which the 

parameters ‘Eps’，‘MinPts’ were set as 4 and 10(9). 

Residual mask generation. Using the deep learning model, 
each corresponding individual atrophy can be obtained by 
calculating the residual images between the original and 
reconstructed images. To verify the clinical value of these 
individual atrophy images, we generated a residual mask and 
extracted ROI images for classification: Firstly, a universally 
residual mask was generated by combing pixels that 
appeared in more than 75 percent residual images of AD 
patients; Secondly, we used the residual mask as an ROI, 
and extracted ROI images from 202 ADs and 202 HCs for 
further study. 

D. Classification experiments 

With ROI images from the above step, we used multilayer 
perceptron (MLP) as the classifier. MLP is a classical and 
simple neural network. The ROIs from 202 AD and 202 HC 
subjects served as the inputs of MLP. The 5-fold cross-
validation was applied to ensure the rationality of the results.  

To verify the clinical performance of these ROIs, we 
compared our model with three previous models: (1) 
principal component analysis (PCA) combined with support 
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vector machines (SVM) based on the whole brain images; (2) 
The traditional CNN model based on the whole brain images; 
(3) we extracted hippocampus regions with the Anatomical 
Automatic Labeling (AAL) template, used pixels of 
hippocampus regions as inputs, and trained an MLP 
classifier. All experiments were done with a 5-folder cross-
validation and repeated experiment 200 times. The accuracy, 
sensitivity, and specificity were calculated to measure the 
classification performance. 

E. Statistical analysis 

In the project, all statistical analyses were performed in 
SPSS Version 22.0 software (SPSS Inc., Chicago, IL). For 
example, a two-sample t-test was used to compare 
demographic characteristics between AD and HC groups. 
The P-value less than 0.05 was considered significant. 

 

Figure 1. The framework of this study.

III. RESULTS 

A. Results of deep learning model 

Deep learning model construction. The advantage of our 
deep learning model was that it could generate the latent 
distribution map of features and then gained residual images 
of AD patients. To prove this, all features after TSNE 
embedding, including features of original HC and AD 
images, and generated HC and AD images were visualized 
in Fig.2. As a result, original AD and HC slices were widely 
distributed for large intra-group variability. These 
distributions were not concentrated at one location but were 
slightly linear. This was because the slice distribution at 
disparate positions was relatively different when the 
difference between adjacent slices was not significant. As 
seen in Fig.2A and Fig.2B, the image distributions generated 
by the HC group and AD group were close, which was 
consistent with our previous hypothesis. Fig.2C showed the 
situation that all distributions were focused, indicated that 
related slices were not the individual ROIs. This 

dimensionality reduction diagram also proved that the 
feature distribution in this experiment was reasonable. 

Visualization of residual images for AD patients. Fig.3 
showed one example of residual images from one AD 
patient. This patient was 68 years old; APOE4 was positive, 
and MMSE value was 20. As shown in Fig.3, the atrophy 
marked in the residual image was mainly concentrated in the 
hippocampus region, which was consistent with previous 
research on AD. The result showed that our deep learning 
model could be effective.  

Validation of the deep learning model. After 120000 
times training of our deep learning model, the loss of the 
anomaly prediction model tended to be stable while the 
performance on validation was consistent with the training 
set without overfitting. Finally, SSIM reached 0.86 in both 
ADNI and Xuanwu’s datasets. 

Residual mask generation. Fig.4 presented the residual 
mask. As it shows, main ROIs were found in the 
hippocampus region, which was in line with current 
research results. 

 

 
Figure 2. Image shows TSNE embedding slices of original HC images (green), original AD images (chocolate), generated HC images (red) and generated 
AD images(blue) 
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Figure 3. Visualization for different slices of an AD subject’s residual 

images. row 1 is the residual images from the view of axial and is sectioned 

at 30,44,49, and 60 respectively. The hippocampus is shown at slices of 44 
and 49. Row 2 is gained from row 1 after threshold selection. Row 3 is 

marked by DBSCAN cluster, showing the obvious focused location of 

difference for effective observation. 

 
Figure 4. The ‘residual mask’ from the view of Axial, Coronal, and Sagittal 
is marked with ‘A’,’ C’,’S’ with the AAL template as background. The red 

part indicated the selected pixels that more than 70 percent of AD subjects 

appeared in the residual images. 

B. Classification Results 

Tab.2 showed the classification results of our proposed 
model and the three previous models. As shown in Tab.2, 
our model achieved the best accuracy (0.94 ± 0.02), 

sensitivity(0.99±0.02) and specificity (0.94±0.05), while the 

results for PCA+SVM (accuracy 0.89±0.01, sensitivity 0.92

± 0.03, 0.87 ± 0.04), AAL+MLP (accuracy 0.85 ± 0.04, 

sensitivity 0.87 ± 0.05, 0.81 ± 0.18) and CNN(accuracy 

0.91±0.03, sensitivity 0.95±0.06, 0.87±0.08) were worse. 
This result showed that the residual mask had better clinical 
diagnosis performance than the whole brain or certain prior 
knowledge ROI (hippocampus region), which indicated that 
the individual atrophy generated from our deep learning 
model may have good diagnosis performance. 

 
Table 2. PERFORMANCE Of DIFFERENCE CLASSIFICATION 
APPROACHES 

 Accuracy sensitivity specificity 

PCA+SVM 0.89±0.01 0.92±0.03 0.87±0.04 

AAL+MLP 0.85±0.04 0.87±0.05 0.81±0.18 

CNN 0.91±0.03 0.95±0.06 0.87±0.08 

Our method 0.94±0.02 0.99±0.02 0.94±0.05 

Note：he methods are conducted with cross-validation and their results are given as mean ± standard 

deviation. 

IV. DISCUSSION 

This paper proposed an unsupervised deep learning model 
utilizing a prevailing model AAE to detect individual 
atrophy. The classification experiment results indicated the 
diagnosis value of individual atrophy generated from our 
model, and therefore the proposed model had the potential to 
be developed as a novel diagnostic tool in the future. 

Besides, when we visualized the individual atrophy results 
of AD patients, such as in Fig.3, it can be observed that the 
results were generally consistent with previous research(3, 
10). That was to say, the model indeed had the ability to 
identify the differences between the images of AD patients 
and their reconstructed HC images to some extent. By virtue 
of this characteristic, we can apply the model to many 
scenarios, even can track conspicuous brain changes by 
other neurodegenerative brain diseases. 

It was worth noting that this study had some limitations. 
Firstly, the current deep learning model was not accurate 
enough to restore the HC images without multiscale 
prediction, including features of low and high scale such as 
the skip connection in U-Net (11). Secondly, the 
classification results in this study were limited. We now only 
compared the classification results with the AD and HC 
groups and in our next work, our model would be applied in 
other groups such as mild cognitive impairment(MCI) and 
subjective cognitive impairment patients(SCD). Lastly, the 
dataset used may not be large enough. Thus the results of 
this study need to be further verified by other datasets. 
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