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Abstract— For survival prediction of brain tumor patients
based on MRI scans, radiomic features have been a major
research focus in the last years. However, radiomic features
do not take the location of the lesion into account, which,
in relation to the functional regions of the brain, could be
a significant factor in predicting survival. An automatic and
exact localization of the tumor in relation to specific functional
areas is not straightforward, as typical brain parcellation
methods fail in presence of large lesions. Here, we propose a
model that replaces the tumorous region in 3D brain MRI
scans with healthy tissue in order to improve the registration
process towards a brain template. Further, we assemble a
set of features for quantitative description of brain tumor
location. On an openly available dataset, registration is
strongly improved. The extracted location features also have
better predictive performance when used after the proposed
registration step and reach accuracies in survival prediction
comparable to radiomic features.

Clinical relevance— This work improves the quantification of
the location of brain tumors in the human brain and proposes
an extension of radiomic features to include the location,
resulting in a refined prediction of patient survival.

I. INTRODUCTION

In recent years, algorithms have improved radiological di-
agnosis of brain tumors by automatically assessing the
risks posed by the tumor. These algorithms mostly em-
ploy radiomic features or use convolutional neural networks
(CNNs). However, tumor location is largely ignored by these
approaches, as radiomic features are location-independent,
and CNNs focus more on texture than on location.

This focus on Radiomics or CNNs can also be seen in the
Multimodal Brain Tumor Segmentation (BraTS) challenge,
a public challenge which allows to perform an unbiased
comparison of different brain tumor segmentation and sur-
vival prediction algorithms [1], [2]. The top competitors in
survival prediction for both 2018 and 2019 focus on differ-
ent combinations of mostly phenotypic features. However,
although the location of the tumor plays an important role in
survival [3], a rigorous automated approach in quantitative
location estimation is still lacking.

We propose a set of multiple location features to uniquely
define tumor location in the brain based on tumor segmen-
tation maps and an anatomical atlas. Similar to radiomic
features, these location features can then be used to assess
the impact of the lesion with machine learning models.

1Imaging and Computer Vision, RWTH Aachen University, Germany
leon.weninger@lfb.rwth-aachen.de

*This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – grant 2699533 72/GRK2150 and the DFG
grant ME 3737/19-1.

One problem of an automated location quantification is
that typical image registration tools are perturbed by brain
lesions, inducing noise in the location estimation. Thus,
before registration, the tumorous tissue should be replaced
by matching healthy tissue. Previous publications on brain
tumor image inpainting can be found for tumor segmenta-
tion [4] or detection [5], as well as for image perturbation
removal [6], and were mostly applied to 2D images. Here,
we present a novel model that replaces tumorous tissue by
healthy tissue in a 3D MRI scan.

The performance of the tumor-replacing model was first
evaluated on a synthetic dataset. The obtained model was
then applied to the BraTS challenge dataset, where the pro-
posed location features were subsequently extracted and used
to predict patient survival. The lesion inpainting improves
registration of brain tumor MRI scans, and the obtained
location features have a predictive power similar to top-
performing previous approaches for patient survival predic-
tion.

II. MATERIALS AND METHODS

A. Data

Two different datasets were employed, a brain tumor
dataset, comprising data from the BraTS 2019 dataset, as
well as an artificially created brain tumor dataset based on
MRI scans from healthy subjects. All data used in this work
were publicly available, thus no separate ethics approval was
necessary. All analyses were conducted in accordance with
the standards of Good Clinical Practice and the Declaration
of Helsinki.

The BraTS training dataset contained T1, T1 contrast-
enhanced, T2, and FLAIR MRI scans, groundtruth segmenta-
tion labels, the patient age, and partly tumor grade, resection
status and survival information. Here, only the datasets
comprising survival information were utilized, reducing the
number of datasets to 208 patients. The data was collected
from multiple institutions, and the scans are of variable
quality and resolution [7]. The three segmentation labels
comprised contrast-enhancing tissue, the non-enhancing tu-
mor core, as well as peritumoral edema.

Healthy MRI scans were obtained from the HCP [8]
and the IXI dataset [9]. The HCP data contained 1113 T1
weighted MRI scans captured on Connectome Skyra MRI
scanners. The IXI dataset contained 581 T1 weighted MRI
Scans captured in 3 different London hospitals using 3T
and 1.5T scanner systems. In total, this joint dataset was
composed 1694 3D MRI scans of healthy patients.

Before usage, a bounding box was applied to every brain
scan, discarding all empty planes. The scans were further
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downsampled to a resolution of 128× 128× 128 and 64×
64×64 using trilinear interpolation. A histogram equalization
was applied, and the value range of the brain region mapped
to [0,1].

For the artificial brain tumor dataset, malign areas were
synthetically inserted into the scans of healthy subject by ex-
tracting exemplary tumors from the complete BraTS dataset,
i.e., also from patients with missing survival information.
This process is visualized in Fig. 1. Next to inserting artificial
tumors in the healthy subjects, a second synthetic dataset was
created, where designated tumorous areas were filled with
zeros instead of tumorous tissue.

Fig. 1. Creation of artificial brain tumor dataset: Brain tumor patient
(1), extracted tumor (2), healthy subject (3), same subject with artificially
inserted tumor (4), or designated tumor area replaced with zeros (5).

B. Tumor inpainting

The task of the employed neural network was to replace
the tumor data with healthy-looking tissue that is consistent
with, and therefore based on, the rest of the brain. For this,
the network must find an internal encoding representing the
healthy brain state while discarding noise as well as the
tumor data. By choosing an encoding smaller than the input,
this behavior is forced during network training. Since the
input and output will be of the same size, commonly chosen
architectures are based on either variational autoencoders
or U-Nets [10]. Variational autoencoders are effective in
unsupervised tumor segmentation. However, multiple papers
suggest that their output is blurry in actual image inpainting
tasks [11]. Therefore, a state-of-the-art variation of the U-
Net was chosen, the Attention U-Net (AUNET) [12]. The
architecture of the AUNET closely follows the architecture
of the U-Net, except for additional attention gates at each
skip connection. These attention gates are designed to allow
the network to prune undesirable feature responses, forcing
the network to disregard information obtained from the tumor
region. The utilized architecture of the attention gate is
an adaption from [13] to volumetric inputs. In Fig. 2, the
architecture of the net is shown. The initial feature map size
was set to 8, and for every downsampling step the number of
feature maps doubles. Training was performed on a Nvidia
RTX 2080 Ti GPU with a batch size of 4 and an Adam
optimizer with default parameters.

Following the idea of enantiomorphic replacement of
tumor tissue [14], it was evaluated whether a second input
image, containing the normal input image flipped at the
sagittal plane, would improve the results. As brains have a
symmetry axis at the sagittal plane, it was hypothesized that

this information could help the neural network, as exemplary
tissue would be at the correct location.

Fig. 2. The AUnet architecture. Yellow blocks designate 3 × 3 × 3
convolutions followed by instance norm, blue blocks convolutions with
stride 2 for downsampling, green blocks 2×2×2 transposed convolutions for
upsampling, and red blocks 1×1×1 convolutions. The number inside each
block is the number of feature maps. All blocks use LeakyReLU activation
functions. The striped rectangle marks the first attention gate.

For the loss function, different combinations were con-
sidered: A simple L1 loss, the structural similarity loss
(SSIM) [15], a combination of the two, as well as a
generative adversarial network (GAN) discriminator loss in
combination with the L1 loss. For the GAN loss, the discrim-
inator is based on a simple image classification architecture.
Local information is captured in progressively downsampled
feature maps using 3 × 3 × 3 convolutions with stride 2.
Each convolution is followed by batch normalization and a
LeakyReLU activation function. After 4 downsampling steps,
the final feature map is fed into a fully connected layer with
64 hidden neurons and LeakyReLU activation, which in turn
leads into a fully connected output layer with a single output
neuron. The discriminator was trained using either a final
sigmoid activation function in combination with a binary
cross entropy loss, or with the approximated Wasserstein
distance, further called Wasserstein GAN (WGAN).

C. Location feature extraction

The individual scans of the BraTS dataset, with and
without previous tumor inpainting, were registered to the
MNI-ICBM 152 6th generation template [16] using the sym-
metric diffeomorphic registration of the ANTs toolbox [17]
with default parameters in order to use the MNI structural
atlas [18], which contained 9 different regions. Relatively
to the atlas regions, the locations of the 3 tumor regions
were quantified using the following features: One-hot, the
binary location of the center-of-mass of the tumor region
in question in an atlas region, Multi-hot, a binary encoding
whether the tumor region overlaps with a certain atlas region,
Center-distance, the distance between the center-of-mass of
the tumor region and the atlas region, Covered-volume-ratio,
the percentage of template area covered by tumor volume,
the Hausdorff-distance, the Minimal-distance between any
two voxels of tumor region and atlas region in question,
and finally the Mean-min-distance, the mean of the minimal
distances of each voxel in the tumor region to the specific
atlas region. All location features were extracted for the three
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tumor classes and the nine atlas regions, resulting in a total
number of 189 features.

D. Survival prediction

First, the extracted 189 features were reduced using the
variance inflation factor (VIF) method [19], with the recom-
mended default VIF threshold of 10. The remaining features
were regressed against the patient survival in days, using
a simple linear regressor as well as Lasso and Ridge re-
gression. For Lasso and Ridge regression, the regularization
parameters were set to default.

III. RESULTS

As groundtruth data for registration of the patient dataset
does not exist, we relied on two indirect measurements of
success: First, the registration error on the artificial dataset,
using the average L1 error of the warp field. Second, the
prediction error of the location features with and without
tumor inpainting.

A. Registration error

10% of the artificial dataset with known groundtruth was
set apart as test set, containing only healthy brains and
extracted tumor areas that were not present in the training
dataset. As groundtruth, the warp fields of the registrations
of the healthy brain scans using the symmetric diffeomorphic
registration of the ANTs toolbox were considered. A baseline
was established by taking the mean registration error of
the scans with artificially inserted tumor before inpainting.
Using the same registration algorithm, the warp field error of
the reconstructed brains was evaluated for neural networks
trained on either the dataset with tumorous tissue or on
the dataset with left-out areas. The warp field errors were
evaluated for a low-resolution (64× 64× 64), as well as for
a higher-resolution (128×128×128) setting. The differences
between baseline and registration after inpainting using dif-
ferent inputs and loss functions for the low-resolution case
can be seen in Table I.

TABLE I
BEST WARP ERRORS AFTER 30 EPOCHS FOR A 64× 64× 64 INPUT SIZE,
BY LOSS FUNCTION AND INPUT TYPE. FLIP: THE INPUT IMAGE FLIPPED

AT THE SAGITTAL PLANE IS ADDED AS A SECOND INPUT. HIGHLIGHTED

IN RED ARE WARP ERRORS <0.2, HIGHLIGHTED AS BOLD IS THE

OVERALL BEST.

Loss function
Input L1 SSIM L1-SSIM GAN WGAN
Tumor tissue 0.432 0.281 0.219 0.247 0.168
Tumor + flip 0.409 0.266 0.214 0.230 0.161
Zeros 0.468 0.205 0.165 0.174 0.187
Zeros + flip 0.516 0.249 0.178 0.168 0.167
Baseline 0.693

The best results were achieved using the combined L1
and SSIM loss or the WGAN loss function. Thus, these two
loss functions were further evaluated on the higher-resolution
data. Between replacement with tumor-tissue or zeros, no

clear performance difference could be established. Both
approaches were further evaluated at the higher-resolution
(Table II). The lowest error was achieved using the combined
L1-SSIM loss on the dataset where tumor areas were cut out.
Exemplary output for the best performing network can be
seen in Fig. 3.

TABLE II
BEST WARP ERRORS AFTER 30 EPOCHS WITH 128× 128× 128 INPUT

SIZE, BY LOSS FUNCTION AND INPUT TYPE. FLIP.: THE INPUT IMAGE

FLIPPED AT THE SAGITTAL PLANE IS ADDED AS A SECOND INPUT. THE

LOWEST ERROR IS HIGHLIGHTED IN BOLD.

Loss function
Input L1-SSIM WGAN
Tumor tissue 0.142 0.370
Tumor + flip 0.146 0.382
Zeros 0.135 0.368
Zeros + flip 0.140 0.382
Baseline 0.989

Fig. 3. Examples for the output generated by the best performing AUNET:
Input (1) and output (2) image of the synthetic validation dataset, and input
(3) and output image (4) of an exemplary scan of the BraTS dataset, with
tumorous area marked in red.

B. Location features

The primary goal behind training the tumor inpainting
networks was to improve the registration for the extraction of
location features. Thus, the best performing model was used
to inpaint the tumors of the BraTS challenge training set.
Location features were extracted before and after inpainting,
and their predictiveness is shown in Fig. 4. The evaluation
was performed using 20 iterations of an 80-20 shuffle train-
test split, using the negative median absolute error. As base-
line benchmark, previously published methods for the BraTS
challenge could be employed. In 2018, Feng et al. [20], won
the first place in the BraTS survival prediction task, and
the code of the implementation was readily available. We
thus used it to compare the performance of our proposed
location-based survival prediction. Using the same data splits
for evaluation, the approach of Feng et al. achieved an error
of -183, which is further used as baseline benchmark.

Survival prediction using location features was improved
using the tumor inpainting. With inpainting, it even achieves
results comparable to top-performing BraTS submissions,
without taking tumor texture or the age of the patient into
account.

IV. DISCUSSION
An integral part of location feature extraction is the reg-
istration of the brain scan to the target atlas. The regis-
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Fig. 4. Negative median absolute error (higher is better) for survival
prediction using the proposed location features before and after tumor
inpainting. Lin. Reg.: Linear regression, Lasso: Lasso regression, Ridge:
Ridge regression

tration algorithm matches local brain structures from the
individual subject to the target. We showed that using a
deep learning image inpainting algorithm replacing voxels
containing tumor tissue with plausible healthy tissue im-
proves the registration process. To that end, a state-of-the-
art architecture and different loss functions were explored.
Following the idea of enantiomorphic filling, it was further
assessed if adding a second input channel with the input
image mirrored around the sagittal plane would improve
results. However, in general, the network seemed to be able
to infer sufficient information without the flipped channel.
A surprising result was that the GAN based losses achieved
similar validation errors during the training using 64×64×64
images, but underperformed when using higher-resolution
128× 128× 128 images. Nonetheless, this shows that GAN
based approaches are suitable for 3D tumor inpainting and
need to be explored further.

The best performing model was then used to improve the
registration process for the scans in the BraTS challenge, and
thus extract less noisy location information of the tumors.
There was a clear improvement in the survival prediction
using the proposed location features extracted from the
inpainted images compared to original images, achieving
results similar to current top-performing algorithms of the
BraTS challenge.

One limitation of our methodology is the necessity of
the tumor segmentation map for survival prediction. These
segmentation maps either need to be manually annotated or
inferred using a segmentation algorithm. Furthermore, it is
unclear how stable the location features will be when used in
a clinical pipeline, where segmentation errors of the tumor
will lead to errors in localization.

V. CONCLUSION

An integral part of location feature extraction is the registra-
tion of the brain scan to the target atlas. We showed that a
deep learning approach to inpainting improves the registra-
tion of lesioned brains to an atlas. Subsequently, extracted
location features were better suited for survival prediction of
brain tumor patients, and similarly predictive as radiomic
features. However, it is still necessary to further explore

tumor location for survival prediction, e.g., by including
location features in radiomic approaches.
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