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Abstract—Despite being able to restore speech perception with 

99% success rate, cochlear implants cannot successfully restore 

pitch perception or music appreciation. Studies suggest that if 

auditory neurons were activated with fine timing closer to that 

of natural responses pitch would be restored. Predicting the 

timing of cochlear responses requires detailed biophysical 

models of sound transmission, inner hair cell responses, and 

outer hair cell responses. Performing these calculations is 

computationally costly for real time cochlear implant 

stimulation. Instead, implants typically modulate pulse 

amplitude of fixed pulse rate stimulation with the band-limited 

envelopes of incoming sound. This method is known to produce 

unrealistic responses, even to simple step inputs. Here we 

investigate using a machine learning algorithm to optimize the 

prediction of the desired firing patterns of the auditory afferents 

in response to sinusoidal and step modulation of pure tones. We 

conclude that a trained network that consists of 25 GRU nodes 

can reproduce fine timing with 4.4 percent error on a test set of 

sines and steps.  This trained network can also transfer learn 

and capture features of natural sounds that are not captured by 

standard CI algorithms. Additionally, for 0.5 second test inputs, 

the ML algorithm completed the sound to spike rate conversion 

in 300x less time than the phenomenological model. This 

calculation occurs at a real-time compatible rate of 1 ms for 1 

second of spike timing prediction on an i9 microprocessor. This 

suggests that this is a feasible approach to pursue for real-time 

CI implementation. 

 Index Terms – Cochlear implant, fine structure, pitch 

perception, machine learning, recurrent neural network 

I. INTRODUCTION 

Cochlear implants (CIs) are arguably the most successful 

neural implant with nearly 40 years of innovation and over 

736,900 devices implanted as of December 2019 [1], [2].  CIs 

significantly improve speech recognition and comprehension 

in children and adult users [1], [3]. However, they are 

considerably less successful at restoring pitch of sound. This 

poses major issue for CI users who speak tonal languages, 

such as Mandarin, as it result in difficulties with speech 

comprehension [4]. It also creates a lesser but significant 

quality of life deficiency by limiting music appreciation [5]. 

Until recently, the focus of improving cochlear implants 

has been on preventing current spread from distorting 

perceived sound. Hardware innovations were implemented to 

minimize electrode distance from the modiolar wall to more 

directly target spiral ganglion neurons, and algorithms were 
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modified to avoid electrical interference by ensuring no 

electrodes delivered current simultaneously [6], [7]; these 

improvements led to significant gains in fidelity of targeting 

neurons for spatial encoding of sound to give the percept in 

sound of a certain frequency. These improvements paired 

with the continuous interleaved sampling (CIS) strategy, 

modulation of amplitude of fixed-rate pulsatile stimulation to 

the envelope of sound, have led to highly accurate English 

speech comprehension in CI users.   

Studies indicate that the inability to correctly convey pitch 

is the result of unrealistic CI-evoked timing of neural 

responses [8].  For example, when normal hearing subjects 

listened to computer generated tones that deliver pulses with 

timing reflecting fine timing information of sound, they show 

improved perception of tonal language (Mandarin) [10], [11]. 

Thirty-years of detailed studies produced a phenomenological 
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Figure 1. Study Design. We aim to create a front end sound processing 

algorithm for a cochlear implant to transforms natural sound into a target 
population firing pattern for the cochlea. This pattern could then be 

transformed into a stimulation pattern that induces a response with 

naturalistic fine timing. A neural network will be used to learn the 
relationship between sound and firing rate from a realistic 

phenomenological model of the cochlea (top). In this paper, we test 

algorithm performance on a simplified problem, producing single auditory 
fiber responses to sine wave and step stimuli, because the CIS algorithm 

does not replicate firing for these inputs (red) but the cochlear model does. 
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model that reflects the full process of sound processing, 

including mechanical transduction and outer hair cell 

connectivity; this model produces accurate fine-timing for a 

single frequency of cochlear neuron[11], [12]. However, even 

on a powerful desktop processor, this algorithm requires 

considerably more time to process the sound that the duration 

of the sound itself.  This problem worsens when considering 

the reduced processing power on an implanted device. 

While replicating exact timing of natural spiking has not 

been attempted per se, high-rate pulsatile stimulation was 

popularized as an improvement to CIS because it leads to 

more desynchronized, naturalistic neural responses and in 

turn improved speech perception in noisy environments[13]. 

However, a recent study showed that reducing the number of 

high rate pulses by half while considering natural firing 

principles improves speech perception [14]; this further 

supports the idea that reducing the number of pulses but more 

accurately replicating fine timing would improve perception. 

In this paper, we create a prototype of a front-end algorithm 

for cochlear implants that can transform any sound into the 

naturalistic fine timing of spikes for a fiber at real-time 

processing speeds using a machine learning (ML) approach 

(Fig. 1).  Our approach is to train a recurrent neural network 

(RNN) to learn the sound-wave-to-spiking relationship 

captured in the validated Zilany 2014 version of the 

phenomenological model of the cochlea [12]. We will first 

evaluate the performance of the RNN in producing natural 

responses to sine waves and steps. We choose this simplified 

problem, because the CIS algorithm fails to capture the 

complexity of the natural encoding of these stimuli (Fig. 1 

red). This front-end could then be included in a CI processing 

algorithm that (1) breaks sound into the power in spectral 

bands, (2) converts power to firing rate over time with a 

machine learning algorithm, and (3) converts induced firing 

rate into a pulse rate stimulation pattern, using equations 

relating pulse rates to induced firing rates[15] (Fig. 1). Here 

we focus on optimizing part (2) of this signal processing chain 

using ML technique. 

II. METHODS 

A. Generation of Training and Test Waveforms 

The data used to train and test the model were 

synthetically generated sine waves and steps in power of a 

400 Hz sinusoid (Fig. 1). All inputs were generated with 

signal of volume 𝑉𝑠𝑡𝑖𝑚 in dB, which was converted to 𝐴𝑚𝑜𝑑 

sound pressure level (SPL) with Equation (1).  

𝐴𝑚𝑜𝑑 (𝑉𝑠𝑡𝑖𝑚) = √2 (20−6 (10
𝑉𝑠𝑡𝑖𝑚

20 ))     (1) 

All inputs modulated a 400 Hz wave of the form: 

𝑠𝑏𝑎𝑠𝑒 =  sin (2𝜋𝑓𝑝𝑟𝑖𝑛𝑐𝑡), 𝑓𝑝𝑟𝑖𝑛𝑐 = 400 Hz    (2) 

 

Sinusoidal modulation was performed with Equation 3: 

     𝑠𝑠𝑖𝑛𝑒 =  𝐴𝑚𝑜𝑑(0.95(1 − 𝑑𝑚𝑜𝑑)  
             sin(2𝜋𝑓𝑚𝑜𝑑𝑡 + 𝜙𝑚𝑜𝑑) + 𝑑𝑚𝑜𝑑)𝑠𝑏𝑎𝑠𝑒  (3) 

, where depth of modulation, dmod, determined the portion of 

modulation compared to 𝐴𝑚𝑜𝑑, reaching up to 0.95. dmod, 

frequency of modulation 𝑓𝑚𝑜𝑑, phase of modulation 𝜙𝑚𝑜𝑑 

and  𝐴𝑠𝑡𝑖𝑚 were varied as shown in Table 1: 

 𝑑𝑚𝑜𝑑  𝑓𝑚𝑜𝑑(𝐻𝑧) 𝜙𝑚𝑜𝑑  (radians) 𝑉𝑠𝑡𝑖𝑚 (𝑑𝐵) 

Min 0.5 2 0 45 

Max 0.9 40 2π 95 

Steps 8 10 5 10 
Table 1. Parameters for sinusoidal input generation 

 

Step modulation was performed with Equation 4, where 

𝑉𝑠𝑡𝑖𝑚1 and 𝑉𝑠𝑡𝑖𝑚2,  the volume in dB of the first and second 

half of each step, and the shift, 𝑡𝑚𝑜𝑑 , were varied in the 

range of Table 2: 

 𝑉𝑠𝑡𝑖𝑚1(dB) 𝑉𝑠𝑡𝑖𝑚2 (dB) 𝑡𝑚𝑜𝑑  

Min 0 45 0.2 

Max 60 95 0.8 

Steps 10 20 20 
Table 2. Parameters for step input generation 

 

𝑉𝑠𝑡𝑖𝑚1 and 𝑉𝑠𝑡𝑖𝑚2 were converted to 𝐴𝑚𝑜𝑑1 and 𝐴𝑚𝑜𝑑2, using 

Equation 1, and step inputs were calculated as: 
𝑠𝑠𝑡𝑒𝑝 =  (𝐴𝑚𝑜𝑑1 + (𝐴𝑚𝑜𝑑2 − 𝐴𝑚𝑜𝑑1)𝑢(𝑡 − 𝑡𝑚𝑜𝑑𝑇))𝑠𝑏𝑎𝑠𝑒   (4) 

, where u(t) is the unit step, and 𝑡𝑚𝑜𝑑  is the fraction of the 
trial length, T.  

Additionally, performance of the model was tested on 

individual spoken word recordings from the training set of 

the Speech Command  dataset[16]. Recordings were filtered 

in the 400 Hz band to be equivalent to synthetic inputs. 

The waveforms were converted into power by using the 

spectrogram function in MATLAB with a hamming window 

of length 512 (Fig. 2a). This produced 6.4 ms bins.  

 The Zilany 2014 model was used to generate the natural 

firing rate over time in responses to these stimuli. The power 

was used as the input for the neural network, and the firing 

rate over time generated by the model was used as the target 

for training and evaluation (Fig. 2b & 2c). The Zilany model 

produced data every 0.2 ms for each 6.4ms sound sample. 

This different bin size was addressed when designing the 

neural network.  

 
Figure 2. Network architecture for this study. (a) Waveforms are 

transformed in spectrograms in MATLAB and each bin of the 400 Hz 

power band is run through the neural network to generate induced firing 
rate over time. (b) Target outputs are generated by the Zilany model with 

smaller time bins. (c) A recurrent neural network is used to turn each time 

bin into thirty-two firing rate predictions over time. 
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For training, 100 synthetic waveforms were randomly 

sample from the data set, half sine waves and half steps. For 

testing performance on natural stimuli, 100 words from the 

Speech Command dataset were randomly selected. 

B. Modeling Cochlear Neuron Response 

A phenomenological model that we refer to as the Zilany 
model, of the human auditory periphery was developed over 
the last 30 years to replicate healthy auditory response to 
perception of any sound [12], [17]. This model accounts for 
outer hair cell and inner hair cell contributions to firing, 
filtering effects, and non-linearities related to synaptic and 
axonal activation. The model transforms sound pressure level 
(SPL) into spiking and firing rate over time for an auditory 
nerve fiber with low, medium, or high spontaneous firing 
(Fig. 2b). Our model consisted of 50 ganglion cells in the 
physiologically observed ratio of low and high spontaneous 
activity fibers located at the 400 Hz position along the 
membrane [18]. The neural responses (spikes/second over the 
duration of the sound stimulus) were used to create a dataset 
for testing and training the neural network. 

C. Recurrent Neural Network (RNN) Model 

Although machine learning has been used for a variety of 

speech processing problems, we found no evidence of it 

being used for optimization of calculation or for generation 

of neural population spiking[19]. Because this is an 

inherently “forwards-only” problem due to signal processing 

progressing from the eardrum to the ganglion cell firing 

pattern, we chose to use a gated recurrent unit (GRU) which 

incorporates the memory of past network states to generate 

new inputs as the core of the network design for the task. 

This should account for effects of history, such as past 

spikes affecting proceeding spikes due to refractoriness. 

There were 32 firing rate values for every spectrogram time 

bin, so a fully connected layer was used to transform the 

outputs of the GRU layer into 32 outputs. This also allowed 

additional calculations to be made to adjust firing rate 

predictions within several milliseconds of one another that 

occur within one spectral bin. During this study, we assessed 

model size and used GRUs with 25, 50, 100, 200, 500, and 

1000 nodes. We then used a fully connected layer that 

reduced the GRU nodes to 32 outputs (Fig. 2c).   

The model was created using the Python Pytorch package. 

To train this model, the mean squared error (MSE) was used 

for backpropagation, using the “MSELoss” criteria. 

D. Performance Metrics 

To assess performance on the test and training data, the rms 
between the target firing rate in spikes per second (sps) of the 
Zilany model and the output of the RNN was used as a measure 
of error. During testing, the model was assessed on 100 
waveforms (49 sinewaves). Transfer learning as also evaluated 
on 100 speech command recordings in the 400 Hz frequency. 
The rms between 10 predictions of the same response to sound 
with the Zilany model was used as a measure of the variance 
in natural responses to sound. The rms was transformed into 
percent error by dividing by the rms of the firing rate over time.  

Statistical testing between models and performance was 
computed with a paired t-test for comparing model size 

performance and a two-sided t-test when comparing 
performance on sinusoidal versus step modulation. 

This study is attempting to understand whether a machine 
learning based front-end could be implemented in real-time in 
a cochlear implant. Thus, in addition to determining the 
minimum number of nodes necessary to predict responses to 
sinusoidal and step modulation, the computation time for the 
model was also assessed compared to the computation time of 
running the Zilany 2014. Run-time was evaluated on one CPU 
from a 2.4 GHz 8-Core Intel Core i9 Processor on a 2019 15-
inch MacBook Pro when the trained RNN and Zilany model 
perform a prediction in response to the same 0.5 second sound 
10 times. We used the ratio of speed as a metric in the results. 

Additionally, we created RNNs of different sizes to 
determine the minimum number of nodes necessary to reach 
an acceptable loss value. We also assessed whether better 
trained networks involved more calculations and therefore led 
to significantly slower run times by comparing performance 
between RNNs trained with 500 and 250,000 epochs. 

III. RESULTS 

Studies indicate restoration of pitch perception requires fine 

timing of cochlear neuron firing. Standard cochlear implant 

algorithms, such as the CIS algorithm do not attempt to 

replicate this fine timing because it is computationally 

intensive. In this study, we attempt to perform the same 

computation as in the phenomenological model of cochlear 

response from Zilany 2014 in real-time by training a neural 

network to learn the computations performed in Zilany 2014. 

We assess performance of our RNN first on predicting 

responses to sinusoidal and step modulation of a 400 Hz 

sound, a simplified task with observable transformations 

compared to natural sound. We then determine whether 

 
Figure 3. Loss/Performance with Epochs. (a) Left. The rms by the last 

epoch of training on networks with 25 to 1000 GRU nodes. Right. Test 
performance of each of the trained models on 100 novel sine and step 

modulated waveforms. (b) The best performance of each size network on 

the training (blue) and test (red) data with the number of training epochs at 

which it best performed written above. Error bars are SEM. 

5715



  

learned transformations apply to natural sounds in the 400 Hz 

frequency and produce neural responses to natural inputs that 

are not captured by the existing CIS algorithm.  

 

A. Performance on Synthetic Sounds 

We first examined the training time and network size 

required to create an RNN that can perform this task. The 

RNN contains a GRU layer and fully connected layer. We 

attempted to train networks with as few as 25 GRU nodes and 

as many as 1000 GRU nodes for up to 250,000 epochs. The 

smaller models trained and reached the lowest training errors 

after fewer epochs (Fig. 3a left). However, all models 

converged to approximately the same performance by 

250,000 training epochs. Larger models reached lower test 

error more quickly. However, by 250,000 training epochs, all 

model size performances were approximately the same (Fig. 

3a right). We speculate that there are fewer weights to adjust 

so these models converge more quickly to an optimization 

minimum. However, ultimately, even a 25-node GRU layer 

learned this transformation after a reasonable number of 

training epochs. Although the best performance occurred after 

different numbers of training epochs, depending on model 

size, all models had test performance comparable to training 

performance of approximately a rms of 10 sps (Fig. 3b).  

We compared this to the minimum achievable error, the rms 

between multiple simulations of the natural response to a 

sound with the Zilany model, which reaches a minimum of 

3.0  0.2 (SEM) sps. Compared to the rms of the signal, the 

models on average have a test error of 4.20  0.03 %. 

The models were trained to infer responses to both 

sinusoidal (red) and step (yellow) modulation (Fig. 4a). The 

RNN was able to generate both types of responses with high 

fidelity to the outputs generated by the Zilany model (green 

dash) (Fig. 4a). The model appeared to predict step input 

responses more accurately. However, difference in 

performance were not statistically significant except for the 

500 node GRU model (Fig. 4b). We expect performance to 

converge with a larger number of training epochs and more 

training data. 

B. Performance on Natural Sounds 

 We then evaluated the relative difficulty of learning 

responses to natural sounds and consistency of cochlear 

neuron transformations by using the same models (Fig. 4) 

without retraining to predict responses to recorded speech in 

the same 400 Hz auditory fiber bundle. Audio recordings 

from the Speech Command dataset of male and female 

subjects saying individual words were inputted into the 

RNN. The amount of transfer learning was again measured 

with the rms between the prediction of the RNN and the 

output of the Zilany model for these natural inputs (Fig. 5a).  

 Without retraining, the model is capable of transfer 

learning and capturing complex structure in the response not 

captured using the CIS algorithm (Fig. 5a). The error 

primarily comes from offsets in predicted firing rate not 

inability to capture complexity. This leads to rms increases 

of up to 80 sps across models, and the minimum percent 

error across models averaged 46.1  0.76 % (Fig. 5a-b). 

Model size shows some significant effect. The 50-node RNN 

significantly outperforms all models except for the 500-node 

RNN (Fig. 5b). However, we speculated that the large 

 
Figure 5. Performance on Natural Sounds. (a) Example natural inputs with 
word, GRU size and number of training epochs written above. Target 

response (green dash) and inferred response (blue) of RNN. (b) Best training 

performance on synthetic sounds (blue) of each model and test performance 
(red) on natural sounds for each network size. Best model training epochs 

written above. *, p < 0.1; ***, p < 0.01 with paired t-test. If there is no bar 

(as for the 50 node GRU), stars indicate t-test compared to all models. (c) 

Test performance across models for predicting responses to natural inputs.  

 
Figure 4. Relative Performance on Sine and Step Waveforms. (a) Input 

power signal (top) and prediction (red/yellow) and target firing response 
generate by Zilany model (green dash). (b) Test performance across 

models on predicting responses to sinusoidal (red) versus step (yellow) 

inputs with networks trained for number of epochs of best overall 

performance. Statistics are two-sample t-test. *, p < 0.1. 
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models had not converged and learned the rules as 

accurately as the smaller models did with fewer weights and 

biases to train. Plotting the minimum loss achieve for each 

network size when the network was trained for up to 

250,000 epochs supported this idea, as the rms still showed 

higher loss values and high variance than when the model 

was trained on sine and step inputs (Fig. 3a). Longer training 

epochs are therefore required to determine the ideal network 

size, but this implies a network larger than 50-100 nodes is 

not necessary to learn cochlear responses to natural stimuli. 

 Observing differences between the inferred response by 

the RNN (blue) and target response (green dash), we find the 

model captured non-linear transformations of the sound into 

firing rate (Fig. 5a left .05-1.5 s & .3-.5 s, right .15-.3 s). The 

model appeared to accumulate the most error for portions of 

response that were not scaled accurately. However, it 

captured complexities in shape that would not be captured 

with a CIS model (grey), which linearly maps the sound 

amplitude envelope to pulse amplitude. These results 

suggest that essential transformations were learned from sine 

and step inputs alone. Additionally, because the models have 

not yet converged, with more training epochs, the RNN will 

likely capture both shape transformation and scaling 

accurately, as it was able to learn offsets in the step response 

(Fig. 4a right). How significantly the present differences in 

scaling influence pitch perception is yet to be determined. 

C. Real-time Applicability 

We evaluated the potential of these RNNs to be used in a 

real-time implementation on the same 0.5 second sound. The 

Zilany model required 1.47  0.01 seconds to predict the 

neural response of a single fiber. The 25-node network 

required 4.73  0.02 milliseconds. We plotted this 

improvement as a ratio of time to perform the task with the 

Zilany model over the time to perform the task with the RNN 

(Fig. 6). The RNN was 335.4  4.54 times faster with a 25-

node network trained with 50,000 epochs. We chose to 

evaluate performance with a minimum 50,000 epochs, 

because the performance of the RNNs converged by 50,000 

epochs across models on the synthetic data (Fig. 3a). So, 

models of these size produced reasonable predictions of 

responses. 

The number of training epochs did not significantly 

influence run-time for most models (Fig. 6 grey v. blue). For 

models with a GRU layer with less than 200 nodes, run-time 

was approximately the same. As the model approached 100 

nodes, the relative gain in computation speed was 

significantly reduced (Fig. 6). As performance was 

consistently low when the RNN has less than 200 nodes (Fig. 

5b), we do not anticipate requiring a network that is less than 

200 times faster than the Zilany model. At these speeds, the 

model can perform a computation in approximately 1/100 of 

the length of the stimulus. If we assume this processing speed 

scales with sound size, because the GRU steps are an iterative 

process, we anticipate these computation speeds to be within 

the range of real-time. 

The computation speed was evaluated on a 2019 MacBook 

Pro with an Intel Core i9 with 2.4GHz Processor 

(I909980HK). These processors are clocked at 478 GFLOPS.  

If we implement the RNN using fundamental blocks rather 

than the ones provided by Python libraries, we can calculate 

the number of operations for each sound sample.  This 

calculation yields the following number of operations for each 

sound sample: (One GRU node calculation = 48 operation) + 

(32 Linear operations, one for each output node: 32(2N), 

where N is the number of GRU nodes). For a 25 node RNN, 

we expect only 48+25*2*32 = 1648 operations.  If these 

operations are to be completed in 6.4ms, the processor must 

be able to execute 1648/0.0064 = 250,000 operations per 

second.  Assuming the typical average 4 cycles/operation, the 

clock speed of this processor must be 250K*4=1MHz.  If we 

assume there are 20 channels that must execute at the same 

time, one for each electrode, we will need a 20MHz 

microprocessor. While many highly powerful 

microcontrollers exist that function at 40 or 80 MHz, this is a 

comfortable execution speed for even a common modern 

microcontroller, such as MSP430 which executes at 24 

MHz[20].  At 142 μΑ/MHz, a typical cochlear implant battery 

with 126mAh would have a 126mAh/(20 MHz*142 

μΑ/MHz) = 44 hour battery life [21].  

With these results, we feel this is a promising approach for 

creating a real-time front end for a cochlear implant that can 

generate realistic target responses. To use this novel front end 

to the benefit of patients, algorithms also require accurate 

transformation of a predicted firing pattern to a stimulation 

pattern that can evoke this firing patter in actual neurons. 

These algorithms also need to be able to incorporate 

complexities of how stimulation parameters, such as pulse 

amplitude and rate affect induced firing rate; however, recent 

studies have begun to explore these exact issues [15]. 

Ultimately, efficacy of these approaches will require clinical 

evaluation of speech and pitch perception using the novel CI 

processing algorithm. 

IV. CONCLUSIONS 

A real-time front end for a CI was created using an RNN. 
The RNN could use less than a 100-node GRU layer and a 
fully connected layer and perform the transformation of 

 
Figure 6. Run-time Evaluation of RNN. The ratio of run-time for 

calculating the response to a 0.5 second synthetic sound was measures 
across 10 runs with the Zilany model and the trained RNN one 1 CPU 

from a 2.4 GHz 8-Core Intel Core i9 Processor on a 2019 15-inch 

MacBook Pro.  
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sinusoidal and step neural response prediction with less than 5 
percent error. Additionally, the relationships between sound 
and predicted firing pattern on this simplified task transfers to 
natural sound and captures a number of non-linearities in the 
transformation of sound into firing rate encoding by the 
cochlea. These RNNs can run over 300 times faster than the 
only existing phenomenological model that perform this task, 
can accurately produce natural cochlear responses to sound, 
and run at real-time speeds on a typical cochlear implant 
microprocessors with reasonable battery life. This is the first 
step towards creating a novel neural implant algorithm that 
generates neural responses with the fine timing of natural 
population responses in the body and we hope the first step to 
restoring pitch perception in CI users.    
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