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Abstract— This paper explores the relation between cognitive
and physical aspects of the human body from a machine
learning standpoint. We propose to use performance on cog-
nitive assessments to predict frailty of elderly adults with
different regression and classification models. We propose a
preprocessing scheme with oversampling and imputation to
overcome the challenge of an imbalanced data distribution on
the existing dataset. We validate the capability of classification
models to predict frailty on patients given cognitive input data
and provide evidence that machine learning models depend on
clinically-defined thresholds.

I. INTRODUCTION

The human body is a highly interconnected system, in
which one can expect intricate dependencies between various
domains. Extensive works have been done to establish these
connections. A decline in cognitive performance has been
associated with a decrease in performance on physical tasks
[1]. On the other hand, physical exercise has been established
as an effective means to combat cognitive impairment, espe-
cially in older adults [2]. This paper explores the relationship
between the cognitive and physical functions of the human
body from a machine learning standpoint. Specifically, this
paper focuses on how machine learning techniques can be
used to predict frailty, occurring when deterioration in many
systems leads to a heightened susceptibility to stress [2],
using information from cognitive assessments.

A model that predicts frailty given cognitive input data
allows us to exploit the relationship between cognitive and
physical domains of human functioning to make preliminary
diagnoses on frailty in patients. In the age of a pandemic,
it becomes increasingly imperative to develop options to
remotely diagnose people. Physical tests often need safety
protocols, supervision, and an in-person proctor to obtain
meaningful results (especially for the elderly), but cognitive
assessments may be more easily completed remotely with
guidance over the phone. The proposed model can pave the
way for easier and faster diagnoses, allowing for preventative
measures to proactively be taken. Such a system can also
prove useful in a future with no ongoing pandemic.

We divide this paper into two main sections. The first
explores techniques that can be used to navigate a limited
and imbalanced (one in which there is unequal representation
of classes) dataset, as is often the case in clinical datasets;
the second seeks to demonstrate which cognitive features are
most successful in predicting physical function.

Recent work has been done in using artificial intelligence
(AI) methods to predict frailty in elderly people. The work

* Electrical and Computer Engineering & Psychiatry Dept., UC San

Diego
I s2kumar@ucsd.edu

978-1-7281-1178-0/21/$31.00 ©2021 IEEE

in [3] implements different binary classification models to
predict physical conditions in a dataset of around one million
samples. The study had 58 input variables, ranging from
sociodemographic (age and gender) to medical (number of
medications) to illnesses (types of diseases). Similarly, [4]
predicts frailty in a dataset of 592 patients using up to 70
input variables. These studies use large datasets and many
input features to predict physical functioning, but there has
been limited work on exploiting the interconnected nature of
the cognitive and physical domains from a machine learning
standpoint.

II. DATASET & FEATURES

In this section, we will examine the imbalance in the avail-
able dataset and discuss motivations for choosing specific
features.

The dataset was collected by Jeste et al. [5] and sponsored
by International Business Machines Corporation (IBM). It
consists of 104 participants from a continuing care senior
housing community. Participants consist of 67% female and
33% male with the age ranging between 65-95 years. For this
cohort, various sociodemographic, cognitive, physical, and
mental variables were collected, and [5] has shown a relation
between cognitive function and physical performance. Of the
104 total participants, we include 92 participants for whom
we have available data on the variables of interest.

While [5] collected many features, we only consider a
subset of those features. First, sociodemographic features
include age, gender, and education, which were chosen to
provide some background information about each patient to
the machine learning model. Second, physical features en-
compass the Short Physical Performance Battery (SPPB) [6],
the Timed Up and Go (TUG) test [7], the physical component
of the Medical Outcomes Study 36-item Short Form (SF-36)
[9], BMI (kg/m?), and waist-to-hip ratio (WHR). The TUG
and SPPB, in particular, have been identified as effective
methods of quantifying function of the lower body [8], while
the other features were chosen as supplements.

Lastly, the cognitive features are comprised of the Mon-
treal Cognitive Assessment (MoCA) [10], the University of
California San Diego Performance Based Skills Assessment-
Brief (UPSA-B) [11], the mental component of the SF-36
[9], and executive function [12]. The MoCA and UPSA-B are
popular metrics used to assess overall cognitive and everyday
function [13][14], and the others are used as additional
features.

The dataset essentially consists of 92 datapoints, making it
small for machine learning models such as logistic regression
and linear regression. Another challenge we face is the

1648



imbalanced distribution among categories. Following the
clinically defined cutoffs for frailty in TUG [15][16] and
SPPB [17][18] (Table I), SPPB is divided into Frail (0-6)
and Pre-Frail+Not-Frail (7-12) for binary classification. The
distribution of different frailty level shows that the dataset is
significantly imbalanced as only 13.95% and 26.67% of data
points are within the frail class for TUG and SPPB, respec-
tively (Table I). An imbalanced dataset makes it difficult for
many models to accurately perform classification since these
models assume an equal class distribution.

In addition to the imbalance, there are 12 patients (13%
of the dataset) with missing values on the MoCA, BMI, and
UPSA input features. The missing values further increase the
difficulty in using the full dataset to predict frailty.

With the limitations above, it is challenging to efficiently
predict physical performance on the TUG and SPPB. To
overcome these challenges, we propose a data preprocessing
method using imputation and oversampling.

IT1I. DATA PREPROCESSING

First, we observe the effects of imputation on our dataset.
Imputation is a method which uses a regressor and the
provided input features to estimate any missing features in
the dataset. By estimating these features, we can include the
patients when training our machine learning model, allowing
us to increase the size of the dataset.

We impute the dataset using Bayesian Ridge [19], Deci-
sion Tree [20], Miss Forest [21], and KNN Regression [22]
as well as basic mean imputation. We implement a logistic
regression (LR) classifier trained and evaluated for binary
classification on the newly imputed dataset using 5-fold cross
validation for a 4:1 train-test split. To reduce the selection
bias we repeat 100 trials of randomized cross-validation, and
report the average balanced accuracy (BA) for both SPPB &
TUG in Table II. BA takes the proportion of each class into
account, allowing for a more accurate representation of the
classifier’s performance on the imbalanced dataset [23].

From Table II, we see that imputation does not have a
significant effect on BA for TUG & SPPB, and some of
the sophisticated imputation methods (like Miss Forest and
KNN) only outperform simply mean imputation by a small
margin. This suggests that imputation does not increase the
accuracy of TUG and SPPB predictions in the dataset but
allows us to expand our dataset.

Second, we implement imbalanced-learn’s SMOTE over-
sampling [24][25]. Oversampling is a technique synthetically
creates minority datapoints to balance the dataset and in-
crease the number of datapoints available for training and
testing. We synthetically create datapoints up to a ratio

TABLE I
CUTOFFS FOR TUG & SPPB
Test Segmentation Frail Pre-Frail | Not-Frail (%)
Range (seconds) > 14 - <14
TUG Ratio (%) 13.95 - 86.05
Range (score) 0—6 7T—9 10 — 12
SPPB Ratio (%) 2667 7333

TABLE II
COMPARISON OF DIFFERENT IMPUTATIONS OF SPPB & TUG
Imputer SPPB BA | TUG BA

Bayesian Ridge 677 124

Decision Tree .668 729

Miss Forest .675 728

KNN .674 723

Mean .672 715

(R), where R indicates the ratio of minority to majority
datapoints. When R=1, the dataset is perfectly balanced. In
Figure 1, we report the average BA of our LR classifier for
every 0.1 increment of R over 100 trials and compare it to
the BA on the baseline dataset, which is created by deleting
patients with missing data. There is no imputation in this
process.

Figure 1 shows that the BA of both TUG and SPPB
increases by oversampling. When R=1, TUG outperforms the
baseline by close to 21%, and SPPB improves by 5%. The
significant improvement in TUG may come from the fact that
the TUG dataset being more imbalanced compared to SPPB
(Table I). The TUG dataset has the largest initial gains from
oversampling, and then, the effects of oversampling taper
off. These results shows that oversampling is an effective
method in our dataset to increase samples in the minority
class, which effectively balances and increases the size of
our dataset.

Lastly, we extract the feature weights to investigate which
features are most important for which tests. The feature
weights are extracted by gathering the correlation coefficients
from the LR classifier. Data preprocessing steps include im-
putation and oversampling as described above. This process
runs for 50 trials, and the normalized and averaged feature
weights are reported for both SPPB and TUG in Table III.

Table III shows that age is an important feature in both
tests, likely due to the natural decline of the body and

—e— SPPB Oversample
ok —e— TUG Oversample

_______________ TUG Baseline_

SPPB Baseline

L L L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. Effects of Oversampling of TUG & SPPB
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TABLE III
FEATURE WEIGHTS FROM LR OF SPPB & TUG
Feature SPPB Weight TUG Weight

Age -0.904 -1.704
Gender -0.226 -0.114
Education 0.502 -0.448
P-SF-36 0.869 1.01
BMI -1.064 0.56
WHR -0.024 0.012
M-SE-36 0.847 1.065
Executive Function 0.312 3.843
UPSA-B 0.049 -1.94
MOCA 0.185 2.288

mind as one ages [26]. Gender, education and WHR have
little impact on both tests. We can also see that compared
to SPPB, TUG generally has stronger correlations to input
features, contributing to its consistently better performance
over SPPB. Specifically, TUG has much stronger correlations
to cognitive features. In the next section, we give an in-depth
treatment to the connection between cognitive and physical
function.

IV. EXPERIMENT & RESULT

This section explores the relationship between cognitive
features and physical features through the lens of an ablation
study. Specifically, we investigate the relationship between
cognitive function assessed by the MoCA, UPSA-B, mental
component of the SF-36 (M-SF-36), and executive function
with physical function determined by performance on the
TUG and SPPB. In addition to the given cognitive features,
supplementary sociodemographic information is provided as
input to the model for every permutation.

A. Method

The primary motivation for choosing the format of an
ablation study was to determine which combination of input
cognitive features were the best predictors of physical func-
tion. This also lets us isolate the distinct impacts of each
cognitive feature.

To assess the best machine learning framework from which
to understand this relationship given the constraining factors
of this dataset, we approach this question from both a
classification and a regression standpoint. In our case, we
want to understand which approach can be used to derive
meaningful results given the size and imbalance of our
dataset. For classification, we implement weighted logistic
regression (LR). Regression models include linear regression,
ridge regression, and SVR. All models are implemented
using Python’s scikit-learn.

B. Experiment & Results

We exclude the preprocessing steps for the ablation studies
because we do not want to introduce synthetic data in the
experiment that may bias our result. Subjects with missing
features are excluded from experiments. Features are itera-
tively chosen and then used to train and evaluate the given
model on the randomly shuffled dataset on a 4:1 train-test

split. Since the dataset is small, we train and evaluate the
model for 2000 trials and report the average result, which is
more basic application of k-fold cross validation. The central
incentive for doing this is to minimize variance across results
and report a stable number.

For classification, we use BA to evaluate performance.
Regression is evaluated on MAE for both tests, and we round
the predictions to the closest whole number to calculate
classification accuracy for SPPB. This way, we can directly
compare performance of our regression models with our
classification models. Note that this process cannot be done
for TUG since it is a timed test.

First, we present comparisons between binary classifica-
tion and regression. Second, we perform arbitrary manipula-
tions of the TUG and SPPB test cutoffs to artificially create
a balanced dataset and observe the effects on performance.

1) Classification vs. Regression: We report the top five
performing permutations of models and features for TUG and
SPPB independently in Table IV. The result indicates that
the binary classification model can achieve a relatively high
accuracy predicting physical functionality from cognitive
features. The best performing features are consistent with
the feature weights in Table III, where executive function
is the most influential variable for TUG. Interestingly, TUG
prediction also performs better than SPPB prediction, as is
consistent with the results from data preprocessing in the
previous section. We conjecture that this behavior is due
to TUG’s higher relation to cognitive features (Table III),
suggesting that for this dataset, TUG is more highly related
to cognitive functioning than SPPB.

We observe from the SPPB results that the classification
accuracy for regression is significantly lower than that of bi-
nary classification. Furthermore, when we analyze the MAE,
the best MAE for TUG is just under 2 seconds, indicating
that there is approximately 15% error (the range of TUG
scores is 13). For SPPB, the best MAE is nearly 1.9, meaning
that there is roughly 14.6% error (the range of SPPB scores
is 13). Regression does not provide a reliable prediction of
physical function scores. This may be explained by the fact
that regression is a finer prediction when compared to binary
classification, and achieving robustness in regression requires
a much larger, balanced dataset than what we have available.
Looking towards binary classification, we are able to obtain
some meaningful results and can establish the relationship
of cognitive and physical domains of the human body from
a machine learning standpoint.

2) Arbitrary Cutoffs: We perform arbitrary manipulations
of the clinically defined cutoffs for the SPPB and TUG tests
to forcibly create a more balanced dataset for binary classi-
fication and discern the following impacts on performance.

As shown in Table I, there is significant imbalance in the
dataset when applying the clinically determined cutoffs for
frailty for the SPPB and TUG tests. By shifting the cutoffs,
we can contrive a more balanced dataset and determine if
such a dataset can improve performance, even if results from
the resulting model do not have any clinical significance. We
experiment with three different cutoffs, each with different
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TABLE IV
COGNITIVE FEATURES FOR PREDICTING TUG & SPPB WHERE 1 - M-SF-36, 2 - UPSA-B, 3 - MOCA, 4 - EXECUTIVE FUNCTION

Binary Classification Regression
Test Model [ Feature(s) | BA Model [ Feature(s) | MAE | Acc. (%)
4 .825 Linear 4 1.956
24 819 1.4 1.963
TUG LR 34 812 Ridge 1,4 1.963 -
2,34 776 1,34 1.995
1,24 152 Linear 2,4 2.000
4 614 Linear 1.4 1.875 16.84
2 613 1 1.879 20.37
SPPB LR 24 .606 Ridge 1 1.879 20.28
1 597 Linear 1,2 1.895 20.19
34 595 Ridge 1,2 1.898 20.10

degrees of balance or imbalance, shown in Table V. There
are two important things to note. First, Cutoff #2 of both
TUG and SPPB are balanced datasets. Second, SPPB Cutoff
#1 is a clinically significant cutoff, created by combining
Frail+Pre-Frail (0-9) and keeping Not-Frail (10-12) separate
(Table I).

After repeating the process performed in the ablation
study described above, we can compare the results from
the different manipulations of the dataset to the original,
clinically significant division of the dataset.

First, we examine the results for TUG in Table VI and
compare it to the original results from Table IV. We observe
that for Cutoff #1 and #2, the BA significantly decreases. For
Cutoff #3, we observe similar performance when compared
to the original results. This result suggests that artificially
forcing a balanced dataset by manipulating the cutoffs does
not improve classification accuracy. Since the distribution of
Cutoff #3 is essentially the inverse of the original distribu-
tion, we observe similar results.

TABLE V
DISTRIBUTION OF ARBITRARY CUTOFFS FOR TUG & SPPB
Test Cutoffs # Frail (%) Not Frail (%)
1 27.9 72.1
TUG 2 53.5 46.5
3 83.7 16.3
1 64.4 35.6
SPPB 2 53.3 46.7
3 38.9 61.1
TABLE VI

PREDICTION ON DIFFERENT DISTRIBUTIONS OF TUG & SPPB WHERE
1 - M-SF-36, 2 - UPSA-B, 3 - MOCA, 4 - EXECUTIVE FUNCTION

[ Test [ Features [ BA Cutoff #1  BA Cutoff #2  BA Cutoff #3 |

4 760 .675 817

2,4 75 .654 .820

TUG 3,4 744 .666 811
1,4 743 .634 757

2,34 735 .645 783

4 .673 .643 .619

2,4 663 .628 612

SPPB 3,4 .657 .628 611
2 .642 .607 583

2,34 641 617 612

From the SPPB results in Table VI, we see that the clini-
cally significant Cutoff #1 outperforms the original result.
Cutoff #1 has a more balanced dataset compared to the
original distribution while remaining clinically significant,
which may be why it was able to outperform the original
distribution. Cutoff #2 and #3 perform worse than Cutoff
#1, but better than the original results.

Even with an unbalanced distribution, the clinically mean-
ingful thresholds yielded better performance than the more
balanced datasets with arbitrary cutoffs. This confirms, from
a machine learning application, that there is some hidden
meaning in the clincal thresholds that holds value to the
model. These clincally significant thresholds are able to
overcome severe imbalance in the dataset and outperform
an arbitrarily created balanced dataset.

V. CONCLUSION

In this study, we have validated the ability for a machine
learning model to classify frailty on the dataset from Jeste
et al. [5] using cognitive and sociodemographic input fea-
tures. Our experiment results indicate that there is a higher
cognitive relation with TUG, and have proved that adhering
to clinically determined thresholds hold greater innate value
to classification models than contrived datasets from an
arbitrary cutoff. Lastly, we found that it may be easier for
models to classify patients as being frail/at risk of frailty
versus being functional. The proposed data preprocessing
using SMOTE oversampling increased the BA on TUG and
SPPB and allowed us to overcome the inherent imbalance in
the dataset.

Future work may look into gathering a larger dataset to
explore the scope of robust predictions, completing a similar
process the mental domain of the human body, and exploring
the possibility of preemptively predicting significant physical
decline.
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