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Abstract— We present an automatic algorithm for the group-
wise parcellation of the cortical surface. The method is based
on the structural connectivity obtained from representative
brain fiber clusters, calculated via an inter-subject clustering
scheme. Preliminary regions were defined from cluster-cortical
mesh intersection points. The final parcellation was obtained
using parcel probability maps to model and integrate the
connectivity information of all subjects, and graphs to
represent the overlap between parcels. Two inter-subject
clustering schemes were tested, generating a total of 171
and 109 parcels, respectively. The resulting parcels were
quantitatively compared with three state-of-the-art atlases. The
best parcellation returned 69 parcels with a Dice similarity
coefficient greater than 0.5. To the best of our knowledge, this
is the first diffusion-based cortex parcellation method based
on whole-brain inter-subject fiber clustering.

I. INTRODUCTION
The study of the human connectome, the network of

connections between different brain regions, has become
a key research area over the last decade. This is due to
its role in neuroscience of furthering the comprehension of
brain function and organization [1]. It also has application
to the study of neurological disorders such as Alzheimer’s
or Parkinson’s disease, among others [2]. The development
of Diffusion-weighted Magnetic Resonance Imaging (dMRI)
techniques has enabled the acquisition of higher quality data,
which results in a more accurate description of brain structure
at the macroscopic level [3]. Diffusion MRI tractography
is able to obtain a representation of the main white matter
(WM) tracts in the brain in a non-invasive and in-vivo way.
When applied to the whole brain, it results in a dataset
containing a large number of 3D curves called fibers [4],
which connect different gray matter (GM) regions. Then, the
connected areas and their connectivity patterns can be used
to develop Connectivity-Based Parcellations (CBP) methods,
with the goal of defining GM sub-regions with similar intra-
group connectivity profiles, while maximizing the difference
between groups [5].

However, high dimensionality, noise, and inter-subject
variability of the data make group-wise parcellation a com-
plicated task. Several strategies have been developed to solve
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this problem, where all of them apply some sort of dimen-
sionality reduction scheme to address the high inter-subject
variability. Lefranc et al. [6] implemented a group-wise CBP
method based on dMRI, where connectivity profiles were
averaged with a Gaussian kernel, after which a watershed
algorithm was used to split the cortical surface. The final
parcellation was obtained using the k-medoids algorithm
on the joint profiles. Silva et al. [7] developed a method
for individual cortex parcellation, based on segmented fiber
bundles using a superficial white matter (SWM) bundle atlas.
The regions were defined based on the connectivity of each
bundle, given by the intersecting regions (or parcels) in
the cortex. The overlap between parcels was solved using
a graph representation. This method has the advantage of
having a direct correspondence between subjects, but its
individual strategy cannot be easily extended to a groups
of subjects due to the high variability of the parcels among
subjects. López-López et al. [8] extended this method to a
group-wise framework, where a diffusion-based subdivision
of anatomical regions is performed. Further improvements
include the selection of superficial and deep WM bundles
from two additional atlases, filtering of irregular parcels, and
the processing of intersected regions across all the subjects
based on the probability of connection for each parcel. A
disadvantage of our previous methods [7], [8], is that they
do not consider inter-hemispheric connections.

Furthermore, the use of an anatomical parcellation and
segmented bundles, as in [8] are strong constraints. Hence
a group-wise parcellation, based on the main connections
for a population, and for the whole brain would be suitable.
To achieve this goal, we propose a method that relies on
inter-subject clustering for the dimension reduction, without
anatomical prior information.

II. MATERIALS AND METHODS
A. Database and tractography datasets

79 healthy subjects from the HARDI ARCHI database [9]
were used. Special acquisition sequences were obtained on
a 3T MRI scanner with a 12-channel head coil (Siemens,
Erlangen). The MRI protocol included the acquisition of T1-
weighted images using a MPRAGE sequence (160 slices,
matrix=256×240, voxel size=1×1×1.1mm), a B0 field map,
and a single shell HARDI SS-EPI dataset along 60 optimized
DW directions, b=1500 s/mm2 (70 slices, matrix=128 ×
128, voxel size=1.71875×1.71875×1.7mm). The database
also includes affine transformation matrices to convert data
between T1, T2 (diffusion) and Talairach spaces.
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The data were pre-processed using BrainVISA / Connec-
tomist 2.0 software1. The main sources of artifacts were
corrected and defective slices were discarded. The analytical
Q-ball model [10] was computed to obtain ODF fields in
each voxel. Finally, a whole-brain deterministic streamline
tractography was performed, using a T1-based propagation
mask with 1 seed per voxel at T1 resolution, a maximum
curvature angle of 30◦, and a forward step of 0.2 mm.
In average, the resulting datasets contain around 1 million
fibers per subject. Cortical meshes were also calculated from
T1 images using Freesurfer2 and BrainVISA, for a total of
81,920 triangles per subject.

B. Fiber clustering

First, an intra-subject fiber clustering scheme is applied
to the whole-brain tractography dataset. The objective is
to obtain compact clusters composed of fibers with similar
trajectories and shapes, representing the main connections of
the brain.

Step 1: Pre-processing. First, the tractography is resam-
pled to 21 equidistant points per fiber, which is enough to
represent the topology of the curves accurately. Next, all
fibers with a length less than 40 mm are discarded, as they
are considered too short and noisy.

Step 2: Intra-subject clustering. A fast intra-subject
clustering algorithm called FFClust [11] is applied to the
fibers of each subject, and clusters with less than 15 fibers
are discarded, leading to an average of 9,733 clusters per
subject. As the resulting clusters are composed of tightly-
packed fibers, the trajectory of each individual group can
be represented by its centroid. Then, the centroids of every
subject are transformed from T2 to Talairach space, enabling
an inter-subject analysis.

Step 3: Inter-subject clustering. With all the centroids
gathered in a common space, an inter-subject clustering
method is applied to them. The first method is QuickBundles
(QB) [12], which is based on a distance threshold defined
by the minimum average direct-flip distance (MDF) between
fiber centroids. This value is set at 20 mm, in line with previ-
ous WM inter-subject studies [13], [14]. The second method
corresponds to a density-based clustering scheme [15], which
uses an autoencoder with LSTM layers to compress the fibers
into a latent space (in this case using a size of 11 floats).
After that, a modified version of the HDBSCAN clustering
algorithm [16] is applied, using default parameters (mini-
mum samples=1 and minimum cluster size=70). The neural
network is trained using the pre-processed tractography data
from all 79 subjects, but only the centroids are clustered.
Note that neither of these inter-subject clustering schemes
uses the number of clusters as an input parameter, but other
parameters, such as MDF distance and density, to determine
them.

In both cases, with the goal of maintaining high represen-
tativeness, only clusters formed by centroids coming from

1http://www.brainvisa.info/
2https://surfer.nmr.mgh.harvard.edu/

70 different subjects or more are selected. Then, the fibers
associated to the intra-subject centroids that make up the
selected clusters are aligned with respect to the inter-subject
cluster centroid using the MDF distance. Furthermore, as
most inter-subject clusters contain several centroids from the
same subject, the fibers corresponding to those centroids are
fused, and the centroid of the fused cluster is calculated as the
pointwise mean of the fused fibers. This effectively groups
the fibers of each subject, which are labeled according to the
inter-subject clusters, obtained using the data from the whole
population. Hence, the obtained clusters have correspondence
between subjects. Finally, the clusters of every subject are
transformed from Talairach to T1 space.

C. Fiber-mesh intersection

In this stage, the intersection between the cortical mesh
and the fiber clusters is calculated separately for each subject
in T1 space, using a modified version of the algorithm in
[7], enabling the computation of inter-hemispheric connec-
tions, in addition to the intra-hemispheric ones. First, since
checking every triangle for an intersection is inefficient, the
3D space is subdivided into cubic cells of side ≈ 1.5mm,
which is a good trade-off between computational cost and
number of intersections found. Then, each fiber is projected
two points forwards and one point backward at each end-
point, thus considering a cell and its neighborhood in the
calculation. Finally, the ray-triangle intersection at both fiber
ends is calculated by the Möller-Trumbore algorithm [17].
Every cluster-cortical mesh intersection is obtained for each
of the 79 subjects.

D. Cortical parcellation

To integrate the connectivity information of all the
subjects, we use the correspondence that exists between
the cortical mesh of different subjects, i.e., an intersection
found in an arbitrary triangle Ti represents an intersection
in roughly the same anatomical location for every subject.
Then, using the index of the triangle and the label of the
cluster that intersects it, enables the processing of individual
intersections at a population level. Several processing are
similar to those proposed in [8], but had to be reimplemented
to deal with the whole cortical meshes and inter-hemispheric
connections.

Step 1: Preliminary parcels. Since every cluster con-
sidered in this step intersects the cortical mesh at both
endpoints, each one of them defines two preliminary regions
or parcels, one for each end. These parcels are named
according to the label of the cluster in question, followed
by an A and a B suffix for each extremity, respectively.

Step 2: Density and probability maps. As whole-brain
connections are used, most cortical mesh triangles are inter-
sected by fibers from different clusters, and multiple fibers
belonging to the same cluster. Hence, each triangle Ti can
represent different parcels with a defined probability for each
one. First, for each parcel, a density map is calculated, based
on the count of intersections that occur in each triangle.
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Fig. 1. Creation of density maps based on cluster-mesh intersections across
all 79 subjects.

This is performed by the calculation of the probability of
connection for the parcels in each triangle. Thus, for each
triangle Ti of the cortical mesh:

1) A global counter ki is created, which registers how
many intersections occur in Ti.

2) The neighborhood Ni is determined, corresponding to
all the triangles that share either a vertex or a side with
Ti.

3) All the clusters that intersect with either Ti or Ni are
obtained across all 79 subjects. Then, for each cluster
found:

a) A label with the name of the cluster Cj plus the
suffix (A or B, depending on the extremity) is cre-
ated. This label, corresponding to a preliminary
parcel, is added to a list associated with Ti.

b) A counter Cj,i (plus A or B) and ki are increased
in an amount equal to the number of times the
cluster intersects with Ti or Ni.

This process is illustrated in Fig. 1, using triangle T70273 as
an example. Then, in order to eliminate noisy regions, parcels
that are considered too small are discarded. Since the cortical
area is distributed reasonably evenly between each triangle,
and considering that a reasonable parcellation has at most
500 parcels per hemisphere, a parcel is considered noisy and
is discarded when its size is less or equal to half of the area
covered by a single parcel in the extreme case described,
i.e., less than 81920/(2·500) ≈ 82 triangles. Finally, the
probability of a parcel in a triangle Ti is defined as the
counter associated to Ti divided by the global counter ki
of Ti. Thus, for each triangle, every parcel has a probability
value between 0, when the parcel does not appear in the
triangle, and 1, when the parcel is the only one present in
the triangle.

Step 3: Parcel overlap. In most cases, multiple probabilis-
tic parcels overlap. Then, if their intersection is significant, it

Fig. 2. Different types of intersection between parcels: (a) No overlap, (b)
Non-significant overlap, (c) Potentially significant overlap.

is useful to fuse and assign them a common label. However,
as these parcels generally have a non-uniform probability
distribution, the overlap may occur in zones of different
densities. To address this, density centers are calculated for
each parcel based on a probability threshold, heuristically
set at 0.20. In general, the overlap between two parcels can
be divided into three cases, as shown in Fig. 2, where the
density center boundary is marked as a dashed line. In the
first case, the parcels do not intersect, and so the overlap
is null. In the second case, the parcels intersect; however,
the intersection occurs at zones of low density. Finally, the
third scenario occurs when the parcels intersect at points
belonging to the density center of each parcel. The latter
case is considered potentially significant, were two bundles
are partially connecting the same region, and the level of
significance is calculated using Equation 1:

Φ(A,B) =
|A ∩B|

min(|A|, |B|)
(1)

To fuse overlapped parcels, an undirected graph is created,
where each vertex corresponds to one parcel, and an edge
is created between vertices if and only if Φ(A,B) ≥ 0.1.
Then, the maximal cliques of the graph are calculated and
sorted by the number of vertices. Next, the parcels belonging
to the same maximal clique are fused in descending order,
arbitrarily assigning to them the label of the first parcel of the
group. Finally, probability maps are recalculated, and hard
parcels are obtained by assigning to each triangle the parcel
with the highest probability.

Step 4: Post-processing. In order to obtain homogeneous
parcels, a series of morphological operations are applied.
First, the parcels are modeled as an undirected graph G =
(V,E), where the vertices are triangle vertices, and the
edges are triangle sides. Next, the connected components are
calculated, selecting only the biggest one as representative
of the parcel and discarding the rest. Then, a morphological
opening (erosion + dilation) is performed, both to eliminate
triangles that are barely connected to the main parcel and
to fill empty spaces within the parcel. Note that several
processing are similar to those proposed in [8], however,
these had to be reimplemented to deal with the whole cortical
meshes and inter-hemispheric connections.
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Fig. 3. Resulting parcellations for both implemented versions (QB [12] and LS-HDBSCAN [15]).

III. RESULTS

Table I shows a brief quantitative description of the
parcellations obtained with both methods. LS-HDBSCAN
clustering results in a relatively small number of parcels,
while the QB method is more in line with state-of-the-
art methods. However, both methods show a high relative
standard deviation, mainly due to the presence of a few very
large parcels. Furthermore, while neither method manages to
fully label every mesh triangle, QB results in a higher cortical
area coverage. This is supported with the parcels shown in
Fig. 3, where QB shows less and smaller holes. Also, in
Fig. 4 it can be seen that LS-HDBSCAN results in fewer
and more compact clusters. In the future, other clustering
algorithms and probablistic tractography could be employed,
what could lead to better results.

Fig. 5 shows the parcellation obtained for QuickBundles,
in three different subjects of the ARCHI database. Note
that the size and shape of the parcels change for each
subject depending on their anatomy. This information is
embedded in the meshes calculated by Freesurfer. Also, fiber
clusters are used separately for each subject in T1 space, but
thanks to the inter-subject analysis, it is possible to obtain a
correspondence between them.

In order to quantitatively evaluate the obtained parcella-
tions, a direct comparison was made with three state-of-
the-art methods: Lefranc parcellation (dMRI, 237 parcels),
López-López parcellation (dMRI, 207 parcels), and the
Brainnetome atlas (multimodal, 246 parcels) [18]. The
smaller number of parcels obtained by the proposed method
makes difficult the comparison with the other parcella-
tions, however, some similarities were found. The similarity
between each obtained parcel and each atlas parcel was
evaluated using the Dice coefficient over the corresponding
triangle sets, as shown in Table II. Both methods show a
higher similarity with the parcellations based on the same
modality as this work. This kind of comparison enables the
identification of similar parcels found in previous work but
is not a form of validation, as there is no ground truth.
Moreover, the number and size of the parcels have a high
impact in determining the similarity between parcels.

Fig. 4. Inter-subject clustering results from the chosen algorithms (QB
[12] and LS-HDBSCAN [15]), for an arbitrary subject.

Fig. 5. Final parcellation for QuickBundles, displayed for the first three
subjects of the ARCHI database. Colors where randomly selected.

IV. DISCUSSION AND CONCLUSIONS

An automatic group-wise cortical parcellation algorithm
was developed, based on the joint structural connectivity of
the fiber clusters of a given population. Results are very pre-
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TABLE I
COMPARISON OF PARCELLATION PERFORMANCE. AVERAGE SIZE AND

STANDARD DEVIATION ARE MEASURED IN NUMBER OF TRIANGLES.

QuickBundles LS-HDBSCAN

Parcels per hemisphere Left Right Left Right
86 85 54 55

Total parcels 171 109
Average size 933.5 1231

Standard deviation 985.1 1054.3

TABLE II
COMPARISON BETWEEN BOTH PARCELLATIONS AND THE

STATE-OF-THE-ART ATLASES, GROUPED BY DICE COEFFICIENT D.

Atlas 0.5 ≤ D < 0.6 0.6 ≤ D < 0.7 0.7 ≤ D < 0.8
QuickBundles

Brainnetome 31 parcels 13 parcels 3 parcels
Lefranc 32 parcels 21 parcels 11 parcels
López 38 parcels 26 parcels 5 parcels

LS-HDBSCAN
Brainnetome 20 parcels 3 parcels 1 parcel

Lefranc 16 parcels 12 parcels 4 parcels
López 17 parcels 8 parcels 3 parcels

liminary but promising, where the best parcellation returned
69 parcels with Dice ≥ 0.5, when compared with state-of-the
art parcellations. To the best of our knowledge, this is the first
approach based on whole-brain inter-subject fiber clustering.
This is challenging for this type of analysis, mainly due to
inter-individual variability. Previous works in general include
anatomical information at some stage of the processing, such
as anatomical cortex parcellations. In this work, we propose
to use only the connectivity given by tractography. Inter-
subject clustering allows us to find reproducible connections
across subjects. The performance of the QuickBundles ap-
proach is superior, resulting in a higher number of fiber
clusters and parcels. Although in the future it is necessary
to carry out in-depth evaluations regarding the parameters
used, we highlight as the main contribution of this work a
first implementation of this type, susceptible to be improved.
Hence, future work will be focused on the improvement of
the method, based on a detailed analysis of the results for
each stage, and the inclusion of an automatic selection of
parameters using score metrics based on cortical coverage
and trajectory compactness. It is also possible to consider a
mixed strategy, using both known labeled fascicles, such as
in [8], and inter-subject clusters, as proposed in this paper.
In this way, the method would indirectly include anatomical
information for the known fascicles, but not in the form of a
cortical parcellation, and would not discard information from
lesser known fascicles, especially short association bundles.
Concerning validation, it is important to create simulated data
for validation of the algorithms, since there is no ground
truth. Furthermore, in the longer term, the inclusion of data
from different modalities, such as fMRI will be evaluated.
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