
  

  

Abstract— The accurate emotional assessment of humans can 

prove beneficial in health care, security investigations and 

human interaction. In contrast to emotion recognition from 

facial expressions which can prove to be inaccurate, analysis of 

electroencephalogram (EEG) activity is a more accurate 

representation of one’s state of mind. With advancements in 

deep learning, various methods are being employed for this task. 

In this research, importance of attention mechanism in EEG 

signals is introduced through two vision transformer based 

methods for the classification of EEG signals on the basis of 

emotions. The first method utilizes 2-D images generated 

through continuous wavelet transform (CWT) of the raw EEG 

signals and the second method directly operates on the raw 

signal. The publicly available and widely accepted DEAP dataset 

has been utilized in this research for validating the proposed 

approaches. The proposed approaches report very high 

accuracies of 97% and 95.75% using CWT and 99.4% and 

99.1% using raw signal for valence and arousal classifications 

respectively, which clearly highlights the significance of 

attention mechanism for EEG signals. The proposed 

methodology also ensures faster training and testing time which 

suits the clinical purposes.  

 
Clinical Relevance— This work establishes a highly accurate 

algorithm for emotion recognition using EEG signals which has 

potential applications in music-based therapy. 

I. INTRODUCTION 

Emotions, the very essence of human beings, can be 
associated with thoughts, decision-making abilities and 
cognitive processes. Therefore, studies on emotional states can 
enhance current brain computer interface (BCI) systems which 
can be further employed in various applications such as 
implementing therapies for disorders like autism spectrum 
disorder (ASD), attention deficit hyperactivity disorder 
(ADHD) and anxiety disorder [1]. Due to such important 
applications, recognition and analysis of emotional states have 
become an important research area in the fields of medical 
science, neuroscience, cognitive science and brain driven 
artificial intelligence. Several methods have been developed 
for emotion recognition which includes the use of both 
physiological and non-physiological signals. Non-
physiological signals include facial expressions, voice signals, 
body gestures while physiological signals include EEG, ECG 
signals and many more. Using non-physiological signals is 
relatively easy and does not require any special equipment, but 
an individual can forge such signals and are therefore not 
considered as a true reflection of one’s emotional state. In 
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contrast, physiological signals are beyond one’s control and 
therefore more suitable for the given task [7]. 

Various studies have been done in the past that have 
specifically handled emotion recognition through 
physiological signals as in [2-9]. Algorithms using power 
spectral density (PSD) features with Naive Bayes classifiers 
[2, 3], PSD and Statistical features with Ontological models 
[4], Deep belief network (DBN) based features with support 
vector machine classifier [5], power spectral and statistical 
features with neural networks (NN) [6], features extracted 
using LP-1D-CNN model with SoftMax as a classifier [7], 
Pearson Correlation Coefficient features with Deep Neural 
Network and Sparse Autoencoder architecture as a classifier 
[8], and raw EEG 1D time signals directly used with 
MMResLSTM as a classifier [9] are a few of them. In most of 
the approaches [2-9], emotional states, which are ideally 
discretized into numerous states such as joy, fear, anger, 
happiness, surprise etc., are broadly classified into two basic 
meaningful dimensions: valence and arousal[18]. The valence 
dimension determines the positive or negative effects of the 
emotion and the arousal dimension determines the intensity of 
it as shown in Fig 1. 

However, it has to be remembered that, tasks like emotion 
recognition occur over a period of seconds and are not an 
instantaneous response which happens over a period of 
milliseconds. As a few seconds of time is a significant amount 
of data for EEG, there might be connections between an 
impulse occurred between a brief period of time. In such cases 
it will be good if the model employed for emotion 
classification considers events that happened far in the past 
also. Architectures such as Convolutional Neural Networks 
(CNN) and Long-short-term-memory (LSTM) may not be 
able to consider this long-term dependence. CNN’s are 
localized networks as determined by the kernel size and 
respective strides, whereas LSTMs do not have good memory 
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Fig. 1 Illustration of Valence and Arousal Theory  
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retaining capability due to the forgetting factor [10, 11]. On the 
other hand, the ability to model dependencies without having 
the constraint of far distances in the sequence is basically the 
very core of attention mechanism in transformer networks [12, 
13]. Transformers [10] which are based on the self-attention 
mechanism, have been very widely accepted in natural 
language processing (NLP) because of this. At a high level, the 
model goes through every vector where self-attention enables 
it to look at other parts of the input sequence which can help 
in the better encoding of the vector. A transformer network is 
a stack of these attention layers with some residuals 
connections. Transformers have the capability to retain as 
much information as the memory limits, and establish a 
relationship between what has occurred in the past and what is 
happening now. LSTM’s and CNN’s model their positions in 
relative terms whereas transformers rely on absolute position 
representations of the input (The positional embedding and it 
is permutation invariant) [10, 11].  

In this research, the variant of the transformer called Vision 
Transformer (ViT) [11] which was made specifically for 
images, has been adapted to emotion detection in EEGs. The 
reason for choosing ViT is to employ time-frequency images 
as generated by wavelet transforms, which takes into account, 
the localized variations in frequency. However direct 
application of ViT on the raw EEG signal gave a significant 
improvement in accuracy as evident from the results when 
compared to time-frequency images. This clearly shows two 
aspects 1) the significance of attention mechanism for EEG 
signals and 2) the need of a proper encoding scheme. To the 
best of our knowledge, this is the first attempt of employing 
ViT for EEG signal analysis and also the first effort towards 
identifying the significance of attention in EEG signals. One 
of the biggest advantages of the simple setup of ViT is that 
they are scalable and efficient. 

II. PROPOSED METHODOLOGY 

In this section, the proposed approach of ViT for CWT images 

and the raw EEG signal is explained in detail. 

A. Model Architecture 

The architecture for ViT [11] closely resembles that of the 
vanilla transformer [10]. NLP transformers have token 
embeddings, meaning that it receives 1D input with a known 

dictionary size as input. However, for 2D input as in the case 
of ViT, the image is divided into a sequence of flattened 2D 
fixed size image patches which act as tokens. Therefore, an 
image of size 𝑥 ∈  ℝ𝐻×𝑊×𝐶 is divided into sequences of 

patches of size 𝑥 ∈  ℝ𝑁×(𝑃2×𝐶) where 𝑁 = 𝐻𝑊/𝑃2 and 𝑃 is 
the selected patch size. Finally, before passing the obtained 
patches to the transformer it is passed through a trainable linear 
projection layer as in (1) [11] for getting the final patch 
embeddings(z0). ViT uses these patch embeddings so that 
there is no constraint of a certain vocab like in NLP 
transformers. 

z0 = [xclass;xp
1E;xp

2E;... ;xp
nE]+Epos, 

E∈RD×(P2.C),Epos∈RD×(N+1)                           () 

zl
'=MSA(LN(zl-1))+zl-1, l=1,2,...,L                            () 

zl
'=MLP(LN(zl

'))+zl
', l=1,2,...,L                                 () 

Similar to Bidirectional Encoder Representations from 
Transformers (BERT) [14] architecture, a learnable class 
token embedding is prepended to the patch embeddings. 
Positional embeddings(Epos) are also added to these patch 

embeddings for introducing positional information of the 
tokens in the sequence. The transformer model contains 
alternating layers of Multiheaded Self-Attention (MSA) and 
MLP (2 layers with Gaussian Error Linear Unit (GELU) non-
linearity) blocks (as in (2), (3)) with a layer normalization(LN) 
before every block and residual connections after every block 
[15, 16]. 

B. Feature Extraction 

In the proposed ViT based EEG classifier network, the 
input data to the ViT is considered in 2 ways i.e., raw EEG 
signal and the image generated through CWT. The architecture 
of the proposed approach is as shown in Figures 2a and 2b. 
The application of Wavelet transforms in EEG has been very 
popular due to their compression and time-frequency 
localization capabilities [17]. The choice of mother wavelet 
used is an important aspect based on its compatibility with the 
time signal. As studied in [17] EEG signals are most 
compatible with near symmetric and orthogonal mother 
wavelets like sym24, db4, coif5. In this research work db4 and 
coif5 mother wavelets have been employed for generating the 

 
Fig. 2: The proposed ViT based architecture: (a) with input as images generated using CWT, (b) with input as Raw EEG 

1D signal. 

(a) (b)
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images to be employed as the input to the ViT. As part of the 
ablation, experiments other compressed representations such 
as auto encoder [8] have been tried instead of the CWT based 
images, however the results were not encouraging. 

III. RESULTS AND ANALYSIS 

In this section, the details of the dataset employed for the 
analysis of the proposed approaches and also the analysis 
results are presented. 

A.  Dataset Description 

The proposed method was validated with the widely used 
DEAP [2] dataset. In this dataset EEG and peripheral 
physiological signals of 32 participants were recorded. Each 
participant in this dataset watched 40 one-minute music videos 
and simultaneously their EEG recordings were taken at a 
sampling rate of 512 Hz with 32 channels which was later 
down sampled to 128 Hz and band pass filtered to 4 – 45 Hz. 
Each video was rated by the participants on the basis of mainly 
valence, arousal, liking and dominance in a range of 1-9. With 
the DEAP dataset, many classes can be extracted from labels 
by dividing them equally. In the proposed work, two class 
labels for valence and arousal are adopted. 

B. Training 

The 60 second recording of each video was broken down into 

non-overlapping smaller n-sized samples (n = 6, 15, 20, 30 in 

seconds) respectively as responses like emotion develop over 

a few seconds of time period and thus breaking down the 

video into these sizes would help us to focus on each emotion 

development properly. The dataset with the above sized 

samples with all the 32 channels was fed to the ViT model 

and trained through the following two ways, which can be 

seen in the Fig 2. 

 

• Image generated through CWT: The n-sized 32 channel 
sample was transformed using CWT with 48 scales and 
employing db4 and coif5 mother wavelets. The scalogram 
images generated as part of the 48 scale CWT are then fed 
to the ViT, in which patch embedding, with a shape of 
[patchsize, patchsize] is applied to it. The flattened 
patches are mapped to D dimensions with a trainable 
linear projection layer (as in (1)). Now, a class token is 
prepended to the output received from the trainable linear 
projection layer. Finally, positional embeddings are added 
to the patch embeddings and it is transferred to the 
transformer encoder. 

• Raw EEG Signal: In this case, instead of any 
transformation or encoding, the raw 32 channel EEG 
signal (preprocessed with the 4 – 45 Hz bandpass filters 
as part of the DEAP dataset) is directly sent to the ViT, as 
shown in Fig. 2b. Since the raw EEG signal is a 1D time 
signal, the patch embedding is applied with a shape of [1, 
patchsize]. Also, as the patches are already flattened in 
this case, they are directly mapped to D dimensions with 
a trainable linear projection. Similarly, a class token is 
prepended to it followed by the addition of positional 
embeddings and finally transferring to the transformer 
encoder.  

  The output from the transformer encoder, in both the CWT 
images and raw EEG signal-based models, is passed through a 
MLP head layer where it is mapped to the number of classes. 
Then a SoftMax layer followed by an ArgMax layer is applied 
for the getting the class with maximum probability. A 6-
layered transformer with an embedding dimension of 512 and 
8 heads for MSA was used for training. As compared to its 
counterparts in NLP, the size and memory usage of this 
transformer is 2-3x times smaller which results in faster 
training and testing time [11]. In this work, the implementation 
was done on Python 3.7.10 and TensorFlow 2.5.0. The 
learning rate is set as 0.00001. 

C. Results 

As discussed in section III.A, to verify the effectiveness of 
the proposed approaches, experiments were carried out on the 
publicly available DEAP dataset [2]. The dataset was divided, 

TABLE I: MEAN CLASSIFICATION ACCURACY OF VALENCE THROUGH 

CWT 

Wavelet 6 sec 15 sec 20 sec 30 sec 

db4 95.7% 92.7% 91.15% 87.5% 

coif5 97% 93.75% 92% 88% 

 

TABLE II: MEAN CLASSIFICATION ACCURACY OF AROUSAL THROUGH 

CWT 

Wavelet 6 sec 15 sec 20 sec 30 sec 

db4 95.5% 93.9% 92.5% 85.15% 

coif5 95.75% 94.4% 92.9% 89.45% 

 

TABLE III: MEAN CLASSIFICATION ACCURACY OF VALENCE AND 

AROUSAL THROUGH RAW EEG SIGNAL 

Labels 6 sec 15 sec 20 sec 30 sec 

Valence 99.4% 99.2% 97.5% 92% 

Arousal 99.1% 99.2% 98% 90.5% 

 

TABLE IV: MEAN CLASSIFICATION ACCURACY OF VALENCE AND AROUSAL THROUGH RAW EEG SIGNAL 

Research Features Classifier Valence Arousal 

Koelstra et al. [2], 2012 PSD Gaussian Naive Bayes 57.6% 62.0% 

Chung and Yoon [3], 2012 PSD Naive Bayes 66.6% 66.4% 

Zhang et al. [4], 2013 PSD, Statistical features Ontological model 75.19% 81.74% 

Liu et al. [5], 2016 DBN based features SVM 85.2% 80.5% 

Yin et al. [6], 2017 PSD, Statistical features Neural networks 83.04% 84.18% 

Emad-ul-Haq Qazi et al [7], 2019 
Features extracted using LP-1D-CNN 

model 
SoftMax 98.43% 97.65% 

Junxiu Liu et al. [8], 2020 PCC 
Deep neural network and sparse 
autoencoder 

89.49% 92.86% 

Jiaxin Ma et al. [9], 2019 Raw EEG 1-D time signal MMResLSTM 92.87±2.11 92.30±1.55 

Proposed Approaches 
Image generated through CWT Vision Transformer 97% 95.75% 

Raw EEG 1-D time signal Vision Transformer 99.4% 99.1% 
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such that 80% of the data went to the training set and the 
remaining 20% to testing set.  

• Image generated through CWT: The results of the 
Images generated through CWT can be seen in Table I 
and II. As shown, the scalograms formed by the 6 
second sized samples performed significantly better 
than the 15, 20 and 30 second sized samples. This 
clearly shows the significant localized behavior of the 
EEG signals and the importance of a model which can 
take localized regions of EEG for further processing. 

• Raw EEG Signal: The results of the raw EEG signal 
experiment can be seen in Table III. In this case, as can 
be seen, 6 and 15 second sized samples performed 
significantly better than the 20 and 30 sized samples. 
More importantly, on comparing Tables I, II and III, it 
is evident that the raw EEG signal-based approach 
surprisingly performs much better than the CWT based 
approach. This could be attributed to the fact that, the 
EEG signals being random and the emotion content 
being local, a transformation of EEG signal is not 
needed (or need to be applied carefully) in the case 
when attention approaches like transformers [11] are 
employed. A detailed analysis of the same will be done 
as part of the future study. 

The proposed approaches are also compared in a 
comprehensive fashion with most of the well-established 
approaches in literature and the results are reported in Table 
IV. From Table IV, it can be seen that the proposed ViT based 
method outperformed all the recent-related state-of-the-art 
studies documented in literature. The main reason for getting 
good results through ViT could be attributed to the attention-
based mechanism. Through the multi-headed attention-based 
mechanism, the model is able to capture and remember the 
development of emotion through time in a much better and 
faster way than what CNN’s and LSTM’s or hand-crafted 
machine learning algorithms can do. It can also be noted that, 
the results presented in this work agree to the observation 
reported by most of the established research works related to 
classification of emotion through EEG signals, that the smaller 
sized samples perform better than the longer sized samples. 

IV. CONCLUSIONS 

In this paper, we investigated two experimental setups i.e., 

image generated through CWT and Raw Signal for EEG 

based emotion recognition with Vision Transformers (ViT). 

The ViT yielded good results with the publicly available 

DEAP dataset with an accuracy of 97% and 95.75% for 

valence and arousal in the Image Formed through CWT 

experiment with Coif5 mother wavelet. On the other hand, an 

accuracy of 99.4% and 99.1% for valence and arousal in the 

Raw EEG signal experiment, thereby outperforming the 

existing state-of-the-art methods. One of the main reasons for 

the exceptional performance of ViT is the attention-based 

mechanism, due to which it is able to capture and retain more 

relevant information than the conventional CNNs’ and 

LSTMs’. Both the experiments conducted also confirmed that 

smaller sized samples are more optimal for capturing the 

emotions, as they yield a higher classification accuracy than 

others. Furthermore, ViTs are more computationally faster 

than other neural networks for similar tasks, which makes 

them more suitable for real time analysis tasks. Future work 

involves a thorough comparison of various compression/ 

encoding schemes as input to ViT as well as an approach to 

identify the most influential EEG channels and also quantify 

the influence of the time-segment which resulted in the 

highest attention score particularly in raw EEG signal 

experiments.  
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