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Abstract— Heart rate monitoring based on photoplethysmog-
raphy (PPG) is a noninvasive and inexpensive way of measuring
many important cardiovascular metrics such as heart rate and
heart rate variability, and has been used in many wearable
devices. Unfortunately, the accuracy of the measurements is
compromised by motion artifacts. We propose a theoretically
sound method to reduce the motion artifacts of heart rate
sensed by a commercial wristband. This method is based on
outlier detection and singular spectrum analysis which enables
us to reduce the movement-related noise in non-stationary
signals. The results suggest that this method exhibits high
correspondence to the simultaneously measured heart rate using
ECG. Several metrics of heart rate variability computed from
cleaned data also indicate high agreement with those obtained
from ECG.

I. INTRODUCTION

Heart rate is an important metric reflecting individuals’
health and even emotional states, and is therefore a desirable
target of continuous monitoring especially using wearable
devices. Photoplethysmography (PPG) is an optical measur-
ing technique that measures blood volume changes near the
surface of the skin. Many useful cardiovascular metrics can
be obtained from the PPG signal including heart rate, blood
oxygen saturation, and even estimates of blood pressure[1].
It is also non-invasive and inexpensive compared to clinical
methods of measuring the cardiovascular metrics, which
leads to the wide adoption of it in wearable devices such as
smartwatches and wristbands [2]. Unfortunately, the ambula-
tory PPG signal is very sensitive to movement-induced noise,
which affects the accuracy of the health metrics inferred from
the raw signal. Since movements are unavoidable in most
practical ambulatory applications, the detection and reduction
of motion artifacts in PPG signal is very crucial.

Various methods and techniques have been developed to
address this problem [3] [4]. Most of these works focus
on obtaining a more accurate estimation of average heart
rate [4], instead of instantaneous heart rate (IHR), which is
required for estimating Heart Rate Variability (HRV). Heart
rate variability is often interpreted in terms of estimates
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of the fluctuations between successive heart beats [5] [6],
and is considered an important metric for both physical
and emotional well-being [7] [8]. Analysis of HRV can
be done in time domain, frequency domain, and nonlinear
domain. Commonly used time domain HRV metrics include
SDNN (standard deviation of normal heart period intervals),
RMSSD (root mean square of the differences between suc-
cessive heart periods) and pNN50 (the percentage of adjacent
heart periods that differ by more than 50 ms) [6]. Time
domain HRV analysis requires beat by beat heart period data
typically obtained from the R peaks of electrocardiogram
(ECG). In the case of PPG, beat by beat heart period data
can be can be obtained by detecting systolic peaks of the
PPG signal [9].1 Frequency domain HRV analysis applies
under the assumption that heart rate can be considered as a
continuous signal, and spectral analysis of this signal can be
obtained using Fourier transform or autoregressive modeling.
Commonly used frequency domain HRV metrics include low
frequency (0.04 Hz - 0.15 Hz) power, high frequency (0.15
Hz - 0.4 Hz) power, and the ratio of low frequency to high
frequency power [6]. Average heart rate typically does not
preserve the beat-to-beat fluctuations for time domain HRV
analysis. It is also an ill-defined variable that lacks theoretical
foundation for frequency domain HRV analysis.

In this work, we propose a method for reducing motion
artifacts of pulse intervals obtained from the PPG of a
commercial wristband within a theoretical framework of IHR
and HRV. We evaluate the IHR obtained from PPG against
that obtained from ECG, and showed Pearson correlation is
much higher and the Average Absolute Error (AAE) is much
lower after cleaning. Some of the HRV metrics computed
from the cleaned IHR also showed good agreement with that
obtained from ECG. This paper is organized as follows. In
section II we describe the theoretical framework. In section
III we describe our approach in detail. In section IV we
present the results of our cleaning method and the evaluation
of these results. Lastly, we discuss the limitations of this
work and future directions in section V.

II. THEORETICAL FRAMEWORK

The integral pulse frequency modulation (IPFM) model
was used by many researchers to model the regulation of
heart rate by the autonomic nervous system (ANS) [10] [11]

1Although the lag between the R peak of ECG to the systolic peak of
PPG of the same cardiac cycle may vary and contributes to the difference
between HRV computed from ECG and PPG, this variance is likely to be
negligible compared to the variance caused by motion artifacts. In this work,
we assume this lag to be approximately constant.
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[12]. The IPFM model takes takes a continuous signal as
input, and generates a spike when the integral of the input
signal reaches a threshold. The integral is reset each time the
threshold is reached. Therefore, it transforms a continuous
signal to a sequence of events.

We define IHR as a continuous function v(t). Cardiac
cycles can be represents by a sequence of events typically
considered to be the peaks of R-wave in ECG, or the systolic
peaks in PPG. This event sequence Ri, (i = 1, 2, ..., N), is
generated by an IPFM model taking v(t) as the input signal.
The i-th event Ri is generated at time Ti when the integral
reaches a fixed threshold θ, as described in (1).∫ Ti

Ti−1

v(t)dt = θ (1)

Under this assumption we define the time between two
consecutive events Ri−1 and Ri as pulse interval RRi,
represented in (2).

RRi = Ti − Ti−1 (2)

The heart rate variability in this model is captured by the
function v(t). The variation of v(t) can be attributed to the
regulation of the ANS through the sinoatrial node.

Typically, v(t) is not directly measurable, but it can be
inferred indirectly through the measurable event sequences
Ri it generates. Based on the negative relationship between
samples of v(t) and RRi (higher values of v(t) correspond
to shorter RRi), the reciprocals of RRi can be used to
approximate v(t). RRi sequence is usually upsampled to
obtain a smooth approximation. Suppose Vi is a sequence of
evenly spaced samples of v(t). Vi can be estimated through
(3), where SSi sequence is the upsampled RRi sequence,
f is the resampling frequency, and N is the length of RRi

sequence.

Vi =
1

SSi
, (i = 1, 2, ..., fN). (3)

III. METHOD

A. Overview
The input of our method is raw RRi sequence containing

outliers and artifacts, as well as accelerometer data recorded
simultaneously, and the output is cleaned Vi sequence. The
pipeline of this method is shown in Figure 1. First, outliers
among the RRi sequence are detected using rules recom-
mended in [13]. We assume small outliers among the RRi

sequence are caused by erroneously detected extra beats,
and large outliers are caused by missing beats failed to
be detected. After outlier detection, we remove the small
outliers and impute the large outliers. The RRi sequence
is then transformed to the Vi sequence through upsampling
and reciprocal transformation. Finally, Singular Spectrum
Analysis is applied to further smooth the segment when
movement intensity is high according to the accelerometer
data.

Fig. 1. Pipeline of Method

B. Outlier Detection

We implemented a set of rule-based outlier detection
criterion originally designed for ECG in [13]. The rules
are based on the distribution of the difference between
two successive RRi. A criterion of interval difference is
computed based on quartile deviation. Successive interval
differences that exceed this criterion are considered to be
caused by an outlier. We found this rule-based criterion to be
reasonably effective on noisy RRi sequence from PPG. The
only modification we made is merging successive outliers
into one when multiple successive RRi are identified to
be outliers. These segments of multiple outliers are usually
caused by sudden movement which tends to corrupt the PPG
signal and makes peak detection difficult.

C. Extra Beats Removal

We assume small outliers among the RRi sequence are
caused by erroneously detected extra beats. Small outliers are
identified from all the detected outliers using robust mean es-
timated by Minimum Covariance Determinant (MCD) [14].
We consider a detected outlier to be a small outlier for
removal if the nearest integer of the outlier RR divided by
robust mean is zero. The small outlier is removed by adding
its value to the smaller one of the two neighboring RRi.

D. Missing Beats Imputation

We assume large outliers are caused by missing beats
failed to be detected. We identify large outliers from all
the outliers using robust mean computed the same way as
small outliers. We consider a detected outlier for as a large
outlier for imputation if it satisfies (4). The large outlier is
then split into smaller pulse intervals using an autoregressive
(AR) model. The outliers that are larger than RRi with the
ratio between it and RRi rounded to one are left untreated at
this step since splitting them would creating small outliers.
For the large outlier ready for imputation, the number of
missing pulse intervals is estimated by the left side of (4).
An AR model is fitted to a window of samples centered
around the large outlier (AR order = 4, sample size = 40).
Each missing pulse interval is estimated sequentially using
the previous intervals and the obtained AR coefficients. After
all the missing intervals are estimated by the AR model, a
weight is multiplied to them to make sure the total length of
them is equal to the value of the large outlier.

round(
RRoutlier

RRi

) ≥ 2 (4)
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E. Smoothing using Singular Spectrum Analysis

After removing extra beats and imputing missing beats,
the RRi sequence no longer has extreme outliers, but still
has artifacts, especially in segments where the magnitude of
acceleration is large. We apply Singular Spectrum Analysis
(SSA) to these segments in order to further reduce these
artifacts. SSA is essentially a Principal Component Analysis
on time series [15]. The aim of SSA is to decompose a
time series into the sum of a small number of interpretable
components such as trend, periodicities and noise [16]. There
are two stages in SSA, decomposition and reconstruction.
Given a discrete time series x[n], n = 1, 2, ...,M , a trajectory
matrix X of dimension L × K is created from K lagged
windows of length L segments of the original signal (L and
K satisfy 2 ≤ L ≤ N/2 and K = M−L+1 respectively). In
the decomposition stage, the trajectory matrix X is converted
into the sum of d elementary matrices Xi with rank 1 via
singular value decomposition (SVD), as described in (5),
where d is the rank of the trajectory matrix, σi is the ith
singular value, Ui and Vi in this equation are the ith column
of matrices U and V from SVD. In the reconstruction stage,
elementary matrices Xi are grouped into components that
can be considered to roughly represent trend, periodicities
and noises. Typically the elementary matrix with the largest
singular value corresponds to the trend in the time series,
while the ones with small singular values usually correspond
to noise. The noise component can be excluded from the
summation to obtain a smoother reconstructed signal.

X = UΣV T =

d−1∑
i=0

σiUiV
T
i =

d−1∑
i=0

Xi (5)

SSA typically applies to evenly sampled time series, and
thus cannot be performed on pulse intervals directly. Instead,
we apply SSA on an evenly sampled IHR signal. Based on
our theoretical framework in section II, IHR is defined as
a continuous signal v(t) representing the regulation of ANS
on heart rate. We use the reciprocals of interpolated RRi to
approximate v(t). TheRRi sequence is upsampled to 4 Hz,
and the Vi sequence is obtained using (3).

We apply SSA to non-overlapping segments of Vi. We
choose the number of elementary matrices used for re-
construction based on the acceleration signal recorded at
the same time. Our previous work has shown that the
higher the acceleration, the lower the agreement between
the IHRs obtained from simultaneously recorded PPG
and ECG signal [17]. We define movement intensity as∣∣∣√a2x + a2y + a2z − 1

∣∣∣, where ax, ay, az are acceleration in
each axis in unit g. When the mean movement intensity in a
segment is above a threshold, we retain the first elementary
matrix X0 for reconstruction. When the mean movement
intensity is below the threshold, we consider no motion
artifact is present in this segment and skip the smoothing
in order to retain as much inherent variance in the pulse
intervals as possible. This threshold is chosen empirically
to separate out segments severely affected by motion. The

length of each segment was chosen to be 10 seconds in
consideration of a balance between capturing the change of
acceleration and having enough data for SSA. The window
length L for SSA is set to be 1/3 of the number of points in
the segment.

IV. RESULTS

A. Dataset

Before discussing results, we briefly describe the study
that collected the dataset being used for testing our method.
9 healthy participants went through interleaving stress and
relaxation tasks during a lab session which lasted about
an hour. Details of the study protocol can be found in
[17]. The study was approved by the Institutional Review
Board (IRB) of Northeastern University. The approach we
proposed is suitable for reducing motion artifacts caused
by mild and sporadic motions, which were present in the
data of all the subjects with varying degrees. Throughout
the study, the participants were wearing an ECG recording
device (Firstbeat Bodyguard 2) and two wrist bands with
reflective PPG sensors (Microsoft Band 2 and Empatica E4).
This work uses the pulse intervals data and accelerometer
data from Microsoft Band, and evaluate the results against
the heart beat intervals data from Firstbeat.

B. Evaluation of Instantaneous Heart Rate

Beat-by-beat comparison directly between the RRi se-
quences from ECG and PPG is not feasible here, because
one-to-one mapping cannot be easily found due to the
outliers and artifacts in the RRi sequence from PPG. Instead,
we compare the samples of the IHR signal, Vi obtained using
(3) where f is set to 4 Hz. The unit of IHR is beats per second
when the unit of RRi is seconds. We converted it to a more
commonly used unit beats per minutes (bpm) by multiplying
60 to it. The Vi sequences from PPG and that from ECG
were aligned by finding the lag between them using cross
correlations. We then compute Pearson Correlation (Corr)
and Average Absolute Error (AAE) between the two aligned
Vi sequences. The cleaning method was applied to the first
set of relaxation and stress tasks (listening to relaxing music,
viewing and describing neutral and evocative images). The
results are shown in Table I. The raw and cleaned signals of
a representative subject is shown in Figure 2.

It can be seen from Table I that AR imputation performs
slight worse compared to an simple equal split imputation
approach. This remains to be true after different orders
(2,4,6,8) and window size (20, 40, 60, 80) of the AR model
were tested. After inspection of the plots, we found that for
most of the long outliers, AR imputation failed to recover
the true value of the missing pulse intervals, and therefore
creates more variance than the equal split imputation.

SSA improves the results of all the subjects. Before apply-
ing SSA, RRi sequence is upsampled to 4 Hz. We experi-
mented with linear interpolation and cubic interpolation, and
found linear interpolation performs better. We also tested the
ordering between reciprocal transform and SSA, and found
that applying reciprocal transform before SSA leads to better
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TABLE I
CORRELATION AND AAE BETWEEN IHR FROM PPG AND ECG

Raw AR EqualSplit EqualSplit+SSA
ID Corr AAE Corr AAE Corr AAE Corr AAE
1 0.247 6.351 0.436 5.389 0.439 5.353 0.482 4.970
2 0.323 7.241 0.593 5.723 0.608 5.587 0.642 5.264
3 0.178 7.632 0.350 5.942 0.351 5.890 0.384 5.505
4 0.681 3.344 0.762 3.067 0.769 3.031 0.791 2.933
5 0.282 5.569 0.477 4.180 0.491 4.109 0.532 3.689
6 0.222 6.498 0.503 4.891 0.515 4.810 0.545 4.498
7 0.172 3.202 0.366 2.524 0.385 2.452 0.486 1.756
8 0.442 3.286 0.598 2.518 0.606 2.511 0.649 2.245
9 0.005 6.029 0.469 3.138 0.481 3.054 0.497 2.856

1 Corr: Pearson’s correlation coefficient 2 AAE: Average Absolute Error
in bpm

Fig. 2. A segment of raw and cleaned pulse intervals with acceleration
magnitude from a representative subject

results that applying it after SSA. During SSA reconstruction
stage, we use only the first component for reconstruction
based on our observation that when movement intensity is
high, the main difference between the RRi sequences from
PPG and ECG are in the trend, and using more components
for reconstruction does not help reducing this difference.

C. Evaluation of Heart Rate Variability

In this section, we compare commonly used time domain
and frequency domain HRV metrics obtained from PPG after
cleaning with that from ECG. For each subject, we use
a 5-minutes segment centered at the middle point of the
viewing evocative pictures task, which is the only task that
lasts longer than 5 minutes other than the relaxation task.
Five minutes is the standard duration for short-term HRV
analysis [6]. The evocative picture viewing task also has
more motion artifacts present in the raw signals compared
to the relaxation task, which makes it more suitable to
demonstrate our cleaning method.

Time domain HRV analysis requires the RRi sequence.
The output of our cleaning method is an evenly sampled
IHR signal, which cannot be used directly to compute the
time domain HRV metrics. The IPFM model can be used
to simulate RRi from IHR. We upsample the IHR signal
to 1000 Hz in order to obtain 1 millisecond resolution of
the generated pulse intervals. Although the generated RRi

sequences do not match the original RRi sequences exactly,
they are very close to each other as shown by a segment of
a representative subject in Figure 3. Since this part is not the
focus of this work, the results of the comparison between
original RRi sequences and generated RRi sequences are
not reported here for the sake of space.

Fig. 3. Original and generated RRs from ECG

The Pearson’s correlation between the HRV metrics com-
puted from ECG RRi and those from generated PPG RRi

after cleaning are reported in Table II. SDNN, pNN50 and
low frequency power show significant correlation ((p<0.05)
between the ECG and PPG metrics.

Bland-Altman agreement analysis [18] of the HRV metrics
are shown in Figure 4. RMSSD, pNN50, and HF power
have good agreement. SDNN and LF power have a negative
bias, but the bias is fairly small considering the range of
the metric. The biases of HF n.u. and LF/HF are likely to
be aggravated by the division operation. Most subjects are
within the 95 percentile (+1.96SD) of the differences. The
outlier exceeding 95 percentile in RMSSD, pNN50 and HF
plots actually represents the same subject (Subject 2). Plots
of acceleration data revealed that Subject 2 exhibited constant
movements during the task, which differ considerably from
the sporadic movements exhibited by other subjects.

TABLE II
CORRELATION BETWEEN HRVS FROM ECG AND CLEANED PPG

HRV Mean±Std (ECG) Mean±Std (PPG) Corr p
meanRR 801.51±130.64 800.80±122.53 0.99 0.00
SDNN 51.68±21.22 57.23±23.75 0.68 0.04

RMSSD 717.69±371.66 754.95±310.87 0.50 0.16
pNN50 0.17±0.12 0.16±0.13 0.71 0.03

LF power 854.48±620.94 911.97±522.01 0.68 0.04
HF power 503.22±612.72 533.82±378.54 0.51 0.16
HF n.u. 0.30±0.13 0.36±0.10 0.65 0.06
LF/HF 2.99±1.87 2.13±1.39 0.30 0.44

1 The unit of meanRR, SNDD and RMSSD are ms; the unit of LF power and
HF power are bpm2; pNN50, LF/HF and HF n.u. are ratios. 2 HF n.u. is
high frequency power in normalized unit, computed as HF/(LF+HF). Since
LF n.u. is equivalent to 1 - HF n.u., it is not reported.

V. DISCUSSION

In this work, we proposed a method for reducing motion
artifacts of pulse intervals obtained from PPG. We first
detected outlier beats, removed extra beats and imputed
missing beats. Then SSA smoothing was applied to segments
with high movement intensity based on accelerometer data.
The agreement between the cleaned IHR from PPG and that
from ECG is greatly improved for all the subjects. We also
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Fig. 4. Bland-Altman agreement plots between HRV metrics from ECG and cleaned PPG

evaluated HRV metrics, and showed SDNN, pNN50 and
LF power significantly correlated with those obtained from
ECG. In addition to the good performance, our approach
has an advantage of the underlying theoretical framework
that defines IHR and HRV mathematically, and allows the
reconstruction of RRi sequence from IHR. Overall, this
paper shows the potential of using commercial wearables
with PPG sensor for HRV analysis under mild motions,
and is an important step towards continuous monitoring of
emotional well-being in ambulatory settings.

There are several limitations in this work. First, our
method starts with low quality pulse intervals because the
raw PPG signal from Microsoft Band 2 was not available.
The raw PPG signal contains more information and there-
fore has more room for improvement in reducing motion
artifacts. Second, we used a fixed threshold computed from
accelerometer data for localized SSA smoothing. Multiple
thresholds, a regression model or probabilistic approach may
be more effective. Going forward, we intend to address these
limitations. We plan to extend this method to include a
function of getting pulse intervals from raw PPG signal and
test it on raw the PPG from a research device (Empatica E4).
We also plan to assess and improve this method using data
collected during diverse conditions such as physical activities
and mental stress.
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