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Abstract— In this work, we compare the performance of
six state-of-the-art deep neural networks in classification tasks
when using only image features, to when these are com-
bined with patient metadata. We utilise transfer learning from
networks pretrained on ImageNet to extract image features
from the ISIC HAM10000 dataset prior to classification. Using
several classification performance metrics, we evaluate the
effects of including metadata with the image features. Further-
more, we repeat our experiments with data augmentation. Our
results show an overall enhancement in performance of each
network as assessed by all metrics, only noting degradation in a
vgg16 architecture. Our results indicate that this performance
enhancement may be a general property of deep networks and
should be explored in other areas. Moreover, these improve-
ments come at a negligible additional cost in computation time,
and therefore are a practical method for other applications.

I. INTRODUCTION

Deep learning has emerged as a powerful suite of tools
for image classification [1], and has a huge potential to
solve challenges in healthcare settings. The use of deep
neural networks is successful at tasks such as classification of
medical images [2], analysis of electronic health records [3]–
[5] and segmenting data from emerging medical technologies
[6], [7]. This enormous potential comes with the caveat that
very large amounts of data are required to train robust models
that generalise beyond the training set. This requirement is
unfortunately difficult to satisfy in the majority of biological
and medical studies due to barriers to data availability.

Transfer learning has emerged as a promising method for
circumventing the need for vast amounts of data to train
deep networks [8]. For domains with limited data, transfer
learning utilises networks pre-trained on similar tasks with
large amounts of data [9]. Transfer learning is often used in
medical imaging [2], [10], [11] due to the limited availability
of data that require expert labeling [12]. Transferring the
image features from one domain to another can at least
match the performance of models trained directly on the
new domain [13]. However the configuration of the transfer
can be performed in a number of ways [12], [14] and more
research is needed in this area.

Medical imaging data often has associated metadata used
by clinicians in patient assessments. These metadata are
multi type (numeric, categorical, etc) and are essential for
maintaining the value of archived data [15]. The information
may be content related, e.g. scanner parameters, or relevant
extracts from computerised medical records (CMR). These
resources contain rich information relating to diseases [16],
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[17], and data driven methods can identify patterns of pa-
tients [3], [4].

Classification tasks based on the combination of imag-
ing with genomics data has been shown to surpass clin-
ical experts in digital pathology [18]. Combining relevant
information about the sample, e.g. patient demographics,
with imaging data has also yielded high accuracy scores
in binary classification tasks [19]. However, the effect of
combining these data is unknown and an assessment of
any improvements or degradation to the networks in these
frameworks is needed.

Clinicians will typically base diagnosis on several infor-
mation sources either implicitly or explicitly. Demographic
factors such as age can influence the likelihood of disease
prevalence. In this work we investigate the combination of
imaging data with related metadata to enhance classification
performance evaluated by several metrics. We utilise trans-
fer learning due to the limited volumes of data available,
comparing the performance with and without metadata. Ad-
ditionally we repeat the experiments with and without data
augmentation during the training of the model.

II. METHODS

A large collection of digital skin images from the In-
ternational Skin Imaging Collaboration (ISIC) Melanoma
Project [20] have been collated, processed and classified
by expert dermatologists. The HAM1000 dataset from the
ISIC database contains 10,015 digital images of skin lesions,
each belonging to one of eight classes of skin conditions.
Additionally the images have associated metadata contain-
ing clinical and acquisition information. The clinical fields
contain a small amount of patient information including
diagnosis of the images, an example is shown in Table I.
Specifically, these are, age (numerical), sex (categorical) and
anatomical site of the lesion (text).

TABLE I
IMAGE METADATA WITH ISIC IMAGES

Clinical Field Example Entry

age approx 55
sex female

anatom site general lower extremity

melanocytic true
benign malignant malignant

diagnosis melanoma
diagnosis confirm type histopathology
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A. Deep Image Features

Consider the input data as X ∈ RN×D where Xi is a
D dimensional data point with N instances of the data. For
imaging analysis X is the imaging data with D pixels and
N images. Deep learning takes X as an input and applies
a series of transformations through hidden layers typically
in the form of convolutions. Following the notation of [21],
a matrix W k ∈ Rdk−1×dk is used to linearly transform the
output of the (k− 1)th layer, Xk−1 ∈ RN×dk−1 , into a dk -
dimensional space, Xk−1W

k ∈ RN×dk , at the kth layer. The
linear transformations are followed by a non-linear function,
σk(z), at each layer. The output of a network with K layers
is given by

F (X) = σK
(
. . . σ2

(
σ1
(
XW 1

)
W 2
)
. . .WK

)
. (1)

F (X) ∈ RN×dK , where dK is the dimensionality of F (X).
For each network we select K such that F (X) corresponds
to the deepest set of image features, typically with the lowest
dimensionality.

We compare several state-of-the-art deep convolutional
neural network architectures for obtaining F . All the net-
works used here have been pretrained using the ImageNet
[22] dataset, and the network weights transferred to the
ISIC image dataset. In this configuration, we are using
the networks as feature extractors. Specifically we evaluate
alexnet [23], densenet201 [24], resnet50 [25], inception-
resnetv2 [26], vgg16 [27] and googlenet [28] each with
and without augmentation added to the input images. To
account for the difference in input size to each network, all
images are resized to the required dimensions using bi-linear
interpolation.

For the augmentation experiments, we introduce a subset
of image manipulations, X ′ = Ω (X) , where Ω represents
the augmentation to the image prior to passing it to the
network. The augmentation function introduces a random
shift in the image of up to 30 pixels from its origin along the
X axis and separately along the Y axis, random reflections
in X and/or Y, and random rotations up to 90 degrees. This
transformation is applied to the training and testing data.

B. Integrating Images and Metadata

The metadata for the images, M are mapped such that they
contain only numerical values to be compatible with standard
neural networks. The mapping function G (M) converts the
data to ASCII decimal introduced in [3]. The conversion
is performed element wise for an input string to allow
maximum flexibility, for example, distinguishing upper and
lower case letters, and mixed numerical and text inputs.
When the input data differ in length, all instances are padded
with trailing white space to the same size as the largest input
string prior to conversion. Any missing entries in the fields
are recorded as not a number (zero in ASCII decimal).

The metadata fields are integrated with the image data by
concatenating the image features obtained by the CNN at its
deepest layer prior to classification, F(X) (blue vector in
Fig. 1), with the encoded metadata inputs, G(M) (red vector
in Fig. 1).
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Fig. 1. Combination of imaging and non-imaging data in deep networks.
A series of convolution and pooling operations (orange) yield a lower
dimensional feature vector (blue) for image data. The non-imaging data
are encoded numerically by mapping to ASCII decimal [3] providing a
metadata feature vector (red). The imaging and non-imaging feature vectors
are concatenated (purple) and used as input for a softmax classifier (green).

H =
(
F(X) G(M)

)
=

F1,1 · · · F1,dK
G1,1 · · · G1,dK′

...
. . .

...
...

. . .
...

FN,1 · · · FN,dK
GN,1 · · · GN,dK′

 , (2)

where N is the number of images, dK is the dimensionality
of the output of the neural network, F(X), and dK′ is the
dimensionality of the converted metadata, G(M).

C. Classification

In all cases we use a softmax function to build a classifi-
cation model for K classes,

σ(z)i =
ezi∑K
j ezj

. (3)

This classification model is trained using gradient descent
for a maximum of 2000 epochs or when the gradient falls
below 10−6. In this work we compare the performance
of the transfer learning based classification of the ISIC
image data, to the performance of transfer learning when
images are combined with their associated metadata. In the
former case, we extract the image features, F(X), from each
network pretrained on ImageNet, which are then passed to
the softmax function to classify the images. In the latter case,
we combine F(X) and G(M) as in Eq. (2), and pass H to
the softmax classifier. In all experiments the data are split
into 70:30 training:testing sets that are fixed for all networks
for comparability of results.

We evaluate the performance of our classification models
via several metrics. Specifically we evaluate the accuracy,
specificity, sensitivity, precision, F-measure, informedness,
markendness and Matthews correlation coefficient (MCC).
The definitions of these are taken from [6] and omitted here
for brevity.
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Fig. 2. Improvement in macro average performance of transfer learning
in deep neural networks when using image metadata. Values are the dif-
ference in performance scores with positive values demonstrating improved
performance when using metadata with image features. For example scores
of 70% (image only) and 80% (combined image and metadata) would be
plotted as 10%.

III. RESULTS

We report the macro average (mean class) performance
in order to concisely summarise the findings of our exper-
iments. In all of our experiments, we find that combining
metadata with the image features improves classification
performance for all networks compared to classifying using
only image features. This enhancement is observed in all
metrics indicating this may be a general characteristic of deep
networks. This is clearly illustrated in Fig. 2 where positive
values indicate an improvement when including metadata.
The only degradation observed was in the sensitivity of a
vgg16 network when using data augmentations. However,
this decrease is small and this network exhibits relatively
low improvements with augmented data compared to the
other networks in this work. Improvements in accuracy and
specificity are relatively small in all cases, though substantial
improvements in the other metrics are seen in all networks.
Specifically, googlenet, densenet201 and inceptionresnetv2
show improvements of more than 10 percentage points,
meaning a score of 0.7 when using only image data increases
to ≥ 0.8, a significant improvement.

To further evaluate the effects of combining the image
metadata with the image features we also consider the area
under the receiver operator characteristic curve (AUROC).
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Fig. 3. Box plots of the class-wise AUROC improvement due to the
inclusion of metadata. Values are the difference in AUROC between models
that combine image features with metadata and those based only on images
features. Positive vales represent enhanced performance and negative values
indicate model degradation. Results from both unprocessed (Unpro) and
augmented images (Aug) are presented. Note the AUROC ranges from 0 to
1.

For each network and experimental set up we perform a class
wise ROC analysis, yielding eight receiver operator curves
and corresponding AUROCs for each network. We subtract
the AUROC for the image data alone from the AUROC when
combining the image features and metadata. This class-level
measure of improvement or degradation is represented as
boxplots presented in Fig. 3. There is an overall increase
in AUROC in all cases except the unprocessed images
when using a vgg16 network which shows a considerable
degradation. When using augmented images vgg16 shows
an enhancement in line with the other networks.

It is worth noting that these improvements come at a
negligible cost as seen in Table II. The training time for
the softmax classifier when using the combined data is com-
parable to when using the image features alone. Moreover,
this is insignificant compared to the feature extraction time
in all networks, smaller by up to two orders of magnitude.
The low time cost makes this a practical extension of current
methods where metadata are available.

IV. CONCLUSION

Adding metadata to image features enhances classification
overall. These improvements are noted in six different deep
convolutional neural networks, as assessed by several perfor-
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TABLE II
NETWORK SUMMARY OF RUNTIMES.

Network dK Extraction (s) F (s) H (s)

alexnet 4096 217; 238 24; 21 95; 95
resnet50 2048 2160; 2174 22; 22 66; 63
googlenet 1024 780; 800 52; 53 52; 50
vgg16 4096 2365; 2323 17; 27 90; 92
densenet201 1920 6435; 6362 65; 69 67; 63
inceptionresnetv2 1536 5750; 5728 34; 38 66; 64

Extraction is the time to obtain the dK dimensional features from the
network processing over 48 CPU cores. Training times refer to time to
train the softmax classifier based on either input features from F or H.

Times for the unprocessed (left) and augmented (right) data are provided
respectively for each case.

mance metrics. Moderate to large enhancements are observed
in all networks, with degradation only noted in a vgg16
architecture. Our results indicate that this may be a general
property in classification of images with deep neural net-
works, though more work is required. These improvements
come at a negligible additional cost in computation time, and
therefore are a practical method for other applications.
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